
3m Phaser Game Making

Mick Chesterman

+++ title = ‘Ch001 - Introduction’ +++

Introduction
Learning to code can be like a tricky puzzle to solve. At times you get stuck. It
helps to have a project you really want to get working. In this book creating a
Retro Platform Game is that project. Part one of this book is a structured start
covering the basics. Part two encourages you to choose your own adventure,
offering you a choice of many missions with supporting working code examples.
This lets you add new features, complexity and style to make the starting game
into your own designed game experience.

We will make our games on the web in a code playground called Glitch.com.
This means that we can easily share our coding creations as part of web pages.
You can get your friends and family to play and test the games you create.

What this Book is and isn’t

This book is:

• a great way to get started making a simple 2D arcade style
game

• a fun way to find out about the basics of the coding process
• an introduction to Javascript and some of the ways it does

things
• a partner guide to support more hands-on collaborative work-

shops

This book has limits! It’s a short book that you can progress through quickly.
Here are some of the things that we don’t cover;

• Advanced 3D approaches to game making or any role playing
elements

• Systematic ways to learn a programming language (we pick up
concepts when we need them)

• Complete guide to the most advanced approaches to writing
game using the Phaser code library

1

How we learn is described in more detail in a chapter in the Appendix. In a
nutshell. We learn by diving into the process of making games by tinkering with
a simple (but slightly broken) grid game. Then you have the choice of either
following a short course which covers the bare minimum of platform game or to
keep tinkering/remix the grid game by choosing from a list of options to alter
and extend it.

Playful group learning processes

This guide was offered originally as a support to group work. As such, it contains
group starter and reflection activities. These are included at the end of this
book in the appendices, so as not to interfere with the flow of someone working
through this book to teach themselves.

Making Games on the Web using Glitch

This book uses Glitch our working and learning space for games. At Glitch.com
you have an editing area for your code on one tab of the browser and a preview
area on another tab. We can also see our code side by side. This kind of website
is called a Code Playground. Using Code Playgrounds skips having to set
your own website and importantly they let you type in some web code and you
can see a preview of the resulting webpage immediately. This quick feedback is
great for beginner coders. We can see straight away when we have something
right or when we have made a mistake that need correcting.

2

https://3m.flossmanuals.net/#how-we-learn-javascript-in-this-book/

Making Games using Phaser

Phaser is a Javascript library which supports the creation of web games. Real
game developers made it and other game developers use it. It’s also a great
choice to make retro games. Retro games have come back into fashion. They are
fun and easy to play on home computer, consoles and especially on your phone.
Parents play them with children and they are a great way to start learning how
to make digital games.

This book will help you create a game in a step by step way adding different
game features along the way. It is inspired by and guided by some great tutorials
that are out there on various websites. Particularly the work of Richard Davey
at Phaser, end3r, Belen Albeza and Chris Mills at Mozilla and Thomas Palef at
lessmilk.com.

Why Javascript for beginners?

Javascript is great learn as it is the language of the web. But even fans would
admit that learning Javascript can be tricky and there are lot so different ways
to do the same thing. A lot of beginner text coders and teachers stick to Python
or other text code languages that are easier than Javascript. You can also avoid

3

text code completely if you want to make games. Kodu, Scratch and Game Star
Mechanic use a visual approach to coding games, where you snap together colour
coded blocks. However, we think that the combination of tools like Phaser and
Glitch and a supportive community of learners bring the use of this authentic
language within grasp of beginners.

About the Phaser Community and Games

Richard Davey is the lead coder on the Phaser project. There are two main
versions of Phaser in use. Phaser 2 and Phaser 3. This book looks at Phaser 2, as
it is easier to start to learn. One thing that the community of people using Phaser
to make games is very good at is sharing how they do it and helping others who
get stuck. There are some fantastic resources available for free. A lot of these
resources are available on the main Phaser website.There is also an online forum
for when you get stuck as well here - http://www.html5gamedevs.com/forum/14-
phaser-2/

There are some great games out there made with Phaser which we can look to
for some inspiration. Here are a few of our favourites.

Dork Squad: Can you (and a partner) save the world from robots? Have you
got what it takes? https://eoinmcg.itch.io/dork-squad

Grooow: Platformer game with puzzle elements! Pick up all the dots to
advance to the next level. But be careful! The more you pick up, the heavier
and bigger you get, and thus it’ll be more difficult to move and jump! https:
//ladybenko.itch.io/grooow

Cybertank: Guide the tank through the levels to collect the cubes and escape.
Great sounds and retro graphics here. http://cybertank.paulp.ws/

Knife Hit: This game is created as part of a fantastic tutorial. It’s a bit

4

http://www.html5gamedevs.com/forum/14-phaser-2/
http://www.html5gamedevs.com/forum/14-phaser-2/
https://eoinmcg.itch.io/dork-squad
https://ladybenko.itch.io/grooow
https://ladybenko.itch.io/grooow
http://cybertank.paulp.ws/

advanced for beginners but is definitely worth checking out. https://www.eman
ueleferonato.com/tag/knife-hit/

+++ title = ‘Ch002 - Jumping Right In’ +++

Jumping Right In
To get started, let’s alter the graphics and game-play of a game that has already
been made. This will help us to see some of the code involved before we have to
start writing our own. This idea is to make the whole process seem less scary,
by making quick changes which we can see the impact of. Like in a game, this
quick feedback gives us a sense of control.

Getting started with the Glitch.com Codeplayground
We are just about to use Glitch to play and mess around with games. Here are
a few things to help you get started.

• You can hit the Fishes in the game playing window and choose Remix
on Glitch to make a new copy of this game so you can make your own
changes (only do this once!)

• The JS file with the game code should show by default but click on game.js
in the list of files on the left if it doesn’t

• After making your changes, click on Show Live and your browser will
open a new tab allowing you to play again with the updates

• Keep the two tabs open and swap between the code view and your game
view to make more updates

• Once you have started working, if you lose your code page then you can
click on the Fishes and select View Source to make more change

Have a play with a simple platform game
Play this game using the cursor keys to move - https://grid-game-
template.glitch.me/

You may notice that the game is impossible. It is. But the good news is we
can fix it. To do this hit the two fishes at the top right of the screen and choose
Remix on Glitch. Remixing means we create our own version of the game

5

https://www.emanueleferonato.com/tag/knife-hit/
https://www.emanueleferonato.com/tag/knife-hit/

that we can change. You now have the following challenges which are available
as a printed document of cards here.

glitch overview 1

What follows is a list of the kinds of changes that are suggested on the cards.

Starting challenge - Change Gravity: find the gravity variable and to
change the number so that you can complete the game. To do this change the
following line.

var gravity = 500;

Starting challenge - Change Background Colour: You can Change the
background colour of the game.

game.stage.backgroundColor = "#5699ab";

Starting challenge - Change Velocity Settings: You may think the game
is a bit slow, changing velocity lets your character moves faster to the left and
the right and up when jumping. Play with the following lines

var velocity_x = 100;
var velocity_y = 300;

Next level challenge - Add more hazards and coins: change the game so
that there are more hazards and coins, do this by altering the o’s and h’s in the
grid shown in the code example below

// Design the level. x = platform, o = coin, h = hazard.
var level1 = [

" ",
" ",
" o ",
" h ",
" xxxxx ",

Next level challenge - Make your own pixel art: see the help section below
for how to use piskel and import those images into your game.

Next level challenge - change the platform layout: change the platform
layout of the game to make it more challenging alter the x’s in the grid code
show below

Boss level challenge - Balance your game: - Use all your knowledge of
velocity and gravity and the placement your platform, hazard and coins to make
a challenging game that is still possible to beat

Create your own characters
We can use a online sprite / pixel art editor to add our own characters. There
are many tools you can use but let’s use an online editor called Piskel. You don’t

6

https://docs.google.com/presentation/d/1fZYko5dL-r3RHF6NZsLyZspBE77K8XIfLgnZ2HFj58Q/edit#slide=id.p
../images/glitch_overview_1.png

have to log in but it can be a good idea to do so you can save your work. To get
started point your browser to https://www.piskelapp.com/ and click on Create
Sprite.

When you create your sprite, by default it creates one 32 pixels high and 32
pixels wide. This is perfect for our game.

Piskel is a pretty intuitive tool to use so we’re not going to give you full
instructions for how to make your character here. But here are a few tips.

1. In your tool bar on the left, you can select the different icons to draw and
edit your images.

2. You can change the size of your drawing tool by clicking on the different
sized squares above the toolbar.

3. You can change the colour of your drawing tool by clicking on the block of
colour below the tool bar

4. It is possible to create animated sprites by clicking on Add new frame
or duplicating your existing frame

Let’s start with a one frame static Sprite. When you are happy with the single
frame you have created we are going to export it. Click on the export icon - a
mountain - on the right.

We are going to export a PNG image to a bit of code called a data URI. So click
on the PNG tab and then select the Open option under Spritesheet data-uri
export.

7

https://www.piskelapp.com/

A Data URI is a way of saving an image or other kind of data as a long-ish
stream of code. It looks kind of scary but we don’t need to understand it at all.
We just need to know what to do with it. Now copy the text that appears on
the screen to your computers clip board using Control + C on your keyboard
or right clicking the mouse and choosing Copy. This is our image as data.

We are now ready to go back to the game code to add our own character. Look
for the piece of code that says:

game.load.image("player", "https://cdn.glitch.com/05027ea3-803e-2Fplayer.png");

Replace the code between the last set of quote marks. Make sure to keep the
“player” part there. Just replace that code that is highlighted in the image below
with the code you just copied. To do this you can use Control + V on the
keyboard or right click and choose Paste.

Let’s see what that looks like by clicking on Show Live to see our gave. You
should now see your character as the player in the game. If it doesn’t work then

8

go back to your code and try the process again. It is easy to make mistakes
when copying and pasting like this. Part of our job is to get used to making
these kinds of mistakes and going back and fixing them.

Extra Activity

If you have more time then you can do the same process of making your own
pixel art for the following:

• replace the yellow blocks coins with your own design of a reward, a coin,
star or simlar

• replace the red hazards block with an image that students have to avoid
• replace the blue blocks with your own image of a platform

Debugging your code in Glitch.com
So that’s it. We have done our first bit of Javascript coding. Ok, we didn’t write
the game from scratch. But a lot of coding is about adapting what someone else
had done before. A lot of the code we are going to meet can be quite readable.
Take the following code.

game.load.image("player", "http://digitalducks.org/images/ggc/player.png");

Some of the language is very similar to real English this. Here this line loads
an image into the game and gives it the name player. At the same time,
somethings look quite intimidating. There are “double quotes”, normal brackets
(), curly brackets{}. These do all do slightly different things. Don’t worry, we’ll
pick them up as we go along by looking at and writing our code.

The Glitch website can help us if we do make a mistake and the code stops
working. Imagine you paste in some code from Piskel, it is easy to delete some
code at the end - say the “); -. You end up with the following

game.load.image("player", "
EUgAAAB4AAAAeCAYAAAA7MK6iAAAAKUlEQVRIie3NoQEAAAgD

This is not going to work and will give us an error, hopefully one that we we
can use to help us work out where the problem is. In this case it does give an
error as shown by the red dot.

Hover over this red dot to see the full error.

In this case, there is a similar line of code following it. So to correct our code
we can see how it is different from that line and see that we need to type the

9

missing ending code of “); If we add that back in then we can say we have fixed
a bug. Debugging is finding and solving errors in our code.

If we have other mistakes we could try some of the following:

• reading the error message to see if it tells us what kind or error it is
• looking at the relevant line of code and comparing it to other similar ones

in our program (is there anything different/ missing here)
• if that doesn’t work try going back to the original project that you remixed

from, view the source it again to see the working code and then comparing
that working code your broken code

• If you are still stuck then you can click on the « icon on the bottom left of
your project to rewind the work you have one by minutes or even days.

End

+++ title = ‘Ch003 - Choose your own Adventure’ +++

Choose your own Adventure
There are different ways you can use this book to learn to make your own games.
Normally books encourage you to start at the beginning and keep reading until
you get to the end but this book isn’t (just) like that. The reason is that different
people learn how to code and make games in different ways. Also different people
have different inspirations that keep them interested and motivated.

This is also true of the way that people play games. There’s a well known
model of different play style types by Richard Bartle. This model, which was
based on observing and analyzing the behaviors people playing together in a
multi-user game, holds that there are four different kinds of play style interests,
each of which is given a descriptive name: Griefers, Achievers, Explorers, and
Socializers.1

• Griefers: interfere with the functioning of the game world or the play
experience of other players

• Achievers: accumulate status tokens by beating the rules-based challenges
of the game world

• Explorers: discover the systems governing the operation of the game
world

10

• Socializers: form relationships with other players by telling stories within
the game world

Different kinds of games suit different play styles. One of the notable successes
of recent years have been open world games that allow you to choose how you
play the game. If you want to stick to the main missions you can follow guidance
to do that but if you just want to explore or be social or mess around you have
the chance to to do that too.

In the same way there are different styles of making games. I’m proposing the
following;

• Social makers: form relationships with other game makers and players
by finding out more about their work and telling stories in their game

• Planners: like to study to get a full knowledge of the tools and what is
possible before they build up their game step-by-step

• Magpie makers: like trying out lots of different things and happy to
borrow code, images and sound from anywhere for quick results

• Glitchers: mess around with the code trying to see if they can break it
interesting ways and cause a bit of havoc

Open World vs On Rails Learning

A lot of learning and guides suit the planners of this world. They start with a
blank canvas and allows you build up your game step by step explaining just
about every line of code that you add. This book does just that in the following
handful of chapters, they take a structured approach to getting to a minimal
platform game and give details of coding concepts (objects, functions, variables,
loops and conditionals) in a logical order using concrete examples from our
emerging game. This approach is called building up code “From Scratch”.

11

This book aims to support learners who like a more “Open World”
approach to learning. To do this the later sections of this book take a different
approach to helping you make games. You are encouraged to various different
game features in what ever order you like. The chapters are much shorter and
designed to be self-contained. Almost like little side or social missions that you
get in great open world games. If you like experimenting you can skip the next
set of chapters and user the starting Grid Game Template2 as your jumping off
point. You can Remix this game to add in new features and looks right away. If
you have been following this book you would have done that in the first chapter.

But to help get an overview of what’s there let’s look in a bit more depth about
what makes a good game.

What makes up a Game?
We play them all the time but did you ever ask - What exactly is a game? How is
it different from just playing around? The Institute of play list key components
that make up a game, be it video or non-digital game. They are as follows.

• Goal: The overall goal of the game, what do you have to do to win
• Parts: What parts make up the mechanisms of playing, this could be

physical, like dice or cards, or digital like our enemies, player and other
hazards

• Rules: Relationships that define what a player can and cannot do in
the game. If. . . then. . . or you may. . . you may not. . . are good sentence
starters for rule making

• Challenge: Obstacles might you put in the player’s way to make reaching
the goal fun and interesting

• ****Space:**** Where the game take place and how that space affects the
game

• Mechanics: The core actions or moves does the player has to do to power
the play of the game

The Institute of Play encourage you to think about these different elements of
a game to allow you to start to make your own game or to start modding or
remxing an existing game. Modding is modifying a game that already exists.

Our own Framework for Game Elements

The above framework is great for a deep analysis of how the different parts of
your game interact. Frameworks can be great to help us map our journeys. To
help us do that we have a simplified framework which has evolved looking at the
different requests that our learners make to add different elements to games.

12

https://glitch.com/~grid-game-template

This framework consists of Core Parts, Game Mechanics, Game Space and Game
Polish. Core parts of our game are similar, this involves the individual elements
of the game and their attributes, we may add more enemies for example. Game
Mechanics in our definitions is about what you do in the game. Where game
parts are nouns and mechanics are verbs. So for our platform core mechanics
would be jumping and collecting. However some of our mechanics are a bit more
like more like extra challenges or rules, like adding a timer. So this is a fairly
wide definition of game mechanic in line with broader definition from Sicart3.
Game Space includes the design or new levels and anything that opens up
space like keys and doors or scrolling screens.

Game Polish or game aesthetics is a dimension identified as one of the four
pillars of game design by game theorist Jesse Schell 4. He makes a distinction
between the mechanics of the game, system elements that effect the core func-
tioning of how the players interact with the game and that of the game aesthetics.
Aesthetics here are the wrapping of the game, not core to how it works but
which have an effect of the game on the emotions and state of mind of the player.
For example the flavour of the graphics and the sound design.

Adding / Changing Game Mechanics
What game mechanics can we add to our platform game? You can choose from
some of the following.

13

http://gamestudies.org/0802/articles/sicart
http://www.gamification.co/2013/09/24/adapt-gamification-designs-with-jesse-schells-four-pillars/
http://www.gamification.co/2013/09/24/adapt-gamification-designs-with-jesse-schells-four-pillars/

• Adding Moving Enemies: make it harder for your players to get past
your enemies

• Jumping on Enemies: to make them disappear, a mechanic made
famous by Mario

• Variable Jumping Heights: if you press down longer you jump higher
• Smaller Collision Boxes: If your game is too hard, you can set smaller

hit boxes, lots of platform games do this
• Add a Countdown timer: this can increase the challenge of your levels,

players must complete them before time runs out
• Extra Lives: if you touch a hazard you lose a life and have to restart

with one less life (to come)
• Adding Player Health: if you touch a hazard you lose health instead of

losing a life

Adding Game Polish
Elements of Polish are often not core to how the game works as a system but the
are key to how our player reacts to our game. The following changes can help.

• Add your own Sound Effects: swapping out existing sounds and
adding new ones for example when you jump

14

• Add Animation to your character: make them look like they are
running or jumping

• Add Soundtrack Music: have some music on a loop when game play is
happening

• Animate Character when Zapped: here an animation is played when
a player or character gets zapped

• Screen Shake: mimicking a shaking screen to create a dramatic ending
• Explosion on Dying: use particles to mimic an explosion when a charac-

ter dies

Changing Game Space
Here are some things you can change around the way you game uses space or
give the player the feeling of exploring space.

• Add your own Background: you can create your own pixel art or
drawn background to add to the game

• Add Game Over Screen: let your player know when they have failed!

• Scaling our Game and Sprites: this may be for aesthetic effect or
could affect game mechanics too

• Adding Levels: This can increase the challenge of our game greatly

• Extending the Game Size: if you want your game to scroll as your
player moves, this is how!

• Keys and Doors: collect keys to open previously closed doors can add
as sense of adventure to your platformer

• Create a Cut / Opening Scene: A great way to introduce rules, info
about your game or a story

15

• Adding Levels with Json: a neater way to create your levels and a way
to find out more about data structures.

Go On Choose your own Adventure
So go on and choose how you want to progress. As described you can start
from scratch and build up your code bit by by bit so you really understand how
each part works. You can do this by following the next chapters starting with
Building a World.

Alternatively, if you like to just jump in, you can keep changing the Grid Game
code, adding in graphics and tinkering around by adding things from the examples
just listed above. This page on Glitch also lists the code examples.[5](#endnote-
1555586500542)

Meeting yourself in the middle

Another way to do this is to try both approaches at the same time. In this way
you get all of the fun of adding in new exciting game elements to a working
game but can back this up by following a logical structure as well. To help you
make a connection between the From Scratch approach and the tinkering with
the Grid Game approach you can dive into the chapter called Understanding
our Game Structure. If may want to read that when altering the Grid Game if
you get confused when making larger changes.

1. https://www.gamasutra.com/view/feature/134842/personality_and_play_styles_a_.php
2. https://grid-game-template.glitch.me/
3. http://gamestudies.org/0802/articles/sicart
4. Here’s the book https://www.oreilly.com/library/view/the-art-

of/9781466598645/ and here’s a summary http://www.gamification.co/2013/09/24/adapt-
gamification-designs-with-jesse-schells-four-pillars/

5. http://ggc-examples.glitch.me/

+++ title = ‘Ch004 - Building a World’ +++

Building a World

16

https://glitch.com/~grid-game-template
https://glitch.com/~grid-game-template
http://ggc-examples.glitch.me/
http://ggc-examples.glitch.me/
/web/20210301145712/https://en.flossmanuals.net/phaser-game-making-in-glitch/adding-game-states/
/web/20210301145712/https://en.flossmanuals.net/phaser-game-making-in-glitch/adding-game-states/

Let’s get started by creating a game world and adding a player to it. Many web
developers use a code playground to quickly and easily share a working version
of their code as a webpage, or part of a page. Using a code playground is much
easier then needing your own webspace. In some ways, all code playgrounds are
similar. These tools let you type in code, and display a preview of the resulting
webpage immediately. This quick feedback is great for beginner coders. We can
immediately see when we have written something properly, and when we have
made a mistake that needs correcting. In this book, we are using glitch.com as
our code playground.

Creating a Game Area
Our first job is to create a game area on a webpage. To create a game area, we
should decide how big it should be on the screen, as well as its shape.

Figure 1: smb 2

For our project, we will be harkening back to a golden age of video consoles: the
8-bit of Nintendo and Sega home video consoles. Game sizes are normally
measured in pixels (px); Pixels are the size of the smallest dot on the screen.
Because Mario is such a well known game character, we will use him as an
example to get a sense of our game scale. Early Mario Bros. games had a screen
size of 256 px wide by 224 px high (256 x 224). Let’s increase the game size

17

to 400 x 300 pixels, to give us a bit more room to play. Now that we know
our game size, we need to create a game space using code.

One of the great things about using a code playground is the ability to Remix
the work of others and use existing code as a template starting point. Lets give
it a try. Our game will be made up of Javascript, living within an HTML page
that will link to the Phaser library and our own Javascript game code.

To begin:

1. Go to https://jamm-labs.github.io/ggcp/baw-chapter-starting-frame/game.js

2. Click on the fish in the top right

3. Click Remix on Glitch. At this point you should probably also click Sign
In and create an account to save your work.

4. Add the following code into the game.js file under the line that says //start
your code here

var game = new Phaser.Game(400, 300);

5. Click Show Live. You should see a new browser tab open and now see a
black area appear on the top left of the screen.

Figure 2: framework ph

This may not seem like much but it’s a great step forward. It means that the
phaser library is up and running in your page and has created a game space
ready for us to fill with interesting things.

We are now going to create a bit of code called an object that will give us a
structure for a lot of our most important game elements. Write the following
code in game.js underneath the line your have already written .

18

https://jamm-labs.github.io/ggcp/baw-chapter-starting-frame/game.js

var playState = {};

var playState.preload = function() {
};
var playState.create = function() {
};
var playState.update = function() {
};

game.state.add("play", playState);
game.state.start("play");

Let’s explain that code a bit. The first line creates an object for the main part
of our game where we play the game. This is called the playState object. It’s
the only game state object we need to worry about now but we can add a game
over state and welcome state later if we want to.

The three statements after it add three functions to this object. The functions
here form a useful structure for our code allowing us to organise it. The structure
is based around when each part of the code needs to run. The sections run in
the following order;

• preload: add code here to preload images and other assets for the game
• create: this code runs after preload and is where we add images and other

elements to the game
• update: this sections runs over and over again for as long as the game is

playing

The last two lines add this code (a state object) to the game and say that this is
the first bit of code to run when the game starts. We will explore this more later
as we start to add more complicated code. For now we can type it and forget
about it for a bit.

Adding a Player to the Game Area
We can add a player in a similar way. However as we are going to do more with
our player we need to change how we add them a bit. Add var player ; above
the line where you create the playState object e.g.

var player;
var playState = {};

Putting this line where we declare the player variable outside of the playState
object means that all the different functions (like preload(), create() and update()
will be able to work with it. This will be useful later.

Add the following code to the preload function

game.load.image("player", "https://cdn.glitch.com/5d318c12-590d-47a1-b471-92a5dc0aae9d%2Fhero_stopped.png");

19

And the following to the create function

player = game.add.sprite(0, 0, 'player');

Your screen should now show a player added at the top left corner. The top left
of the player is added at co-ordinates x:0 and y:0

Adding Gravity to our player
At the moment our Player is stuck at the top of our game. Normally in a
platform game gravity acts to pull down our player towards the floor. We can
add gravity to the player to make this happen. Gravity is one of the game
elements that are dealt with by the Physics system. To add physics abilities
to all the game world elements add the following lines right at the start of the
create function code.

game.physics.startSystem(Phaser.Physics.ARCADE);
game.world.enableBody = true;

Then add the following line of code in create after where you add player to the
game.

player.body.gravity.y = 500;

Your player should now fall from the top of the screen when you run your
code. Gravity works! But the player falls all the way off the screen so it is no
longer visible. This is not idea for out game. Later will add platforms but for
now we will just stop the player from leaving the screen. We do this using the
collideWorldBounds capability. Add the following line after your last one in
create function.

player.body.collideWorldBounds = true;

The player should now stop when it falls to the bottom of the screen. If this all
seems a bit basic to you Don’t Worry we are actually going great guns here!
We’ve already got past some of the biggest barriers to getting started making a
web game.

Check your Code
If you have followed this chapter correctly should should have some code like
the following area - https://jamm-labs.github.io/ggcp/building-a-world-
chapter/game.js

Understanding Sequencing

One of the key concepts in computer programming is the importance of the
sequence of the computer commands that you write and how they are run. In each
of our functions the computer - or code compiler more correctly - will read our

20

https://jamm-labs.github.io/ggcp/building-a-world-chapter/game.js
https://jamm-labs.github.io/ggcp/building-a-world-chapter/game.js

code from the first line of the function to the last. This means that it is important
to make sure our code is in a logical order. There is a good beginner resources
on sequencing here - https://www.bbc.com/bitesize/guides/zsf8d2p/revision/1

To give an example we can look at the lines of code which add

player = game.add.sprite(0, 0, 'player');
player.body.gravity.y = 500;

We can see here that first the player is added to the world and second the gravity
value for that player is set. What happens if we swap over the order of these
two lines? Try it out put the line with gravity above the line that adds player to
the game. Then click on your Show Live tab.

Because the line setting the gravity property is before the line where the player
is created it means that there is an error. The screen appears but our player
doesn’t load. The message here is that we need to have some awareness of what
order we should be running different parts of our code and to pay attention to
the sequence, the order that we put it in.

Variables and the var keyword

When coding we often create variables using the var keyword. A Variable
means something we can create and change. Variables can be used to hold
different kinds of information, numbers, words, true/false elements, and more
complicated groups of elements called objects. In our code we create several
variables player and gravity are key ones.

To start using a variable we need to declare it using the var keyword. You can
see that happens with player right at the start of the code. After that we can just
use player to refer to the variable, we only use var when making it (declaring it).
You may ask why do we list some variables at the start of the code or relevant
functions. This helps make our code simple to read and understand.

Using functions and parameters

We have already written some functions in code. For the playState object we
have written and added three functions to it; preload, create and update.
We create and use these functions to help us to organise our code as they run
in a particular order. The Phaser framework calls and runs the code in these
functions one after the other as the web page loads.

As well as creating our own functions, we will also meet other functions which
area already written for us that we can use. These functions are also sometimes
called methods. To make things simpler in this book we will try to use only
the term function.

Phaser contains pre-written functions which are bits of code that do certain jobs
for us. We can recognise them by the use of brackets () after the name of the

21

https://www.bbc.com/bitesize/guides/zsf8d2p/revision/1

function being called. For example. here look at the following code.

game.add.sprite(0, 0, "background");

Here we use a function of game called game.add.sprite() to create and add
our new variable called player to the game object. Between the brackets we
including three pieces of information called parameters. In other words in this
line of code we pass this function three parameters.

The parameters passed to the function here are; the x co-ordinate 0, the y
co-ordinate 0, and the name of the image to add ‘background’. This particular
function needs these bits of information to be able to do its job of adding the
image passed to it at the right place in the game. We’ll get used to passing
parameters into functions as we go along. For now just try to be aware of
these terms and try to understand how they are being used when you come
across them.

Let’s add some elements to make a more realistic game space. We use the
platform game genre as that is easy to recognise and to create code for. Let’s
create some platforms for our player to jump onto and some coins to collect.

Creating a Group for our Platforms and Ground
We already know how to add images to our game but when we add our platforms
we are going to do it in a way that allows us to change the properties of all the
platforms at once. You will see how this will be useful in a bit. To do this we will
first create a group, and then when we create each platform we will add them to
that group. To add specific platforms we now need to follow this pattern.

• load images in preload
• add images in create
• add them to the platforms group
• add code to make the player stand on the platform

First let’s add the variable platforms to the start of our code. Change the code.

var player;

so that it now reads

var player;
var platforms;

In the playState.preload function let’s load up an image for ground and a
platform.

game.load.image("ground", "https://cdn.glitch.com/5d318c12-590d-47a1-b471-92a5dc0aae9d%2Fground.png");
game.load.image("grass:4x1", "https://cdn.glitch.com/5d318c12-590d-47a1-b471-92a5dc0aae9d%2Fgrass_4x1.png");

At the end of our the existing code in the plaSstate.create function let’s add
the code which creates a group in our game called platforms and enables body
so that it can interact with other elements in the game.

22

platforms = game.add.group();
platforms.enableBody = true;

Now let’s add this code after the above to create a ground for our player to
stand on

var ground = platforms.create(0, 275, 'ground');

Try running your code at this point. You will see that when the player sinks
down behind the floor. To avoid this in playState.update: add this code

game.physics.arcade.collide(player, platforms);

Try again and this time the player bumps the platform down out of sight. To
avoid this add another line after your last one added to playState.create:.

ground = platforms.create(0, 275, 'ground');
ground.body.immovable = true;

Follow this pattern to add more platforms for the player to jump on.

var platform1 = platforms.create(150, 220, 'grass:4x1');
platform1.body.immovable = true;

var platform2 = platforms.create(250, 150, 'grass:4x1');
platform2.body.immovable = true;

var platform3 = platforms.create(75, 100, 'grass:4x1');
platform3.body.immovable = true;

Feel free to change the location of your three platforms to make them more
challenging.

Debugging Jumping
This game actually starts with a Glitch at this point that we have to fix. There
is something not right about jumping here. We can jump when ever we want.
This means we can jump right up to the top of the screen as if we were flying.
This isn’t what we want. We should only be able to jump when we are touching
the ground. This will be is one the rules of our game and it is common to a lot
of platform games. To make this happen we can use a conditional statement
using if.

Change the code which controls the up keyboard key to change the statement
condition in the first line to be:

if (game.input.keyboard.isDown(Phaser.Keyboard.UP) === true && player.body.touching.down === true) {
player.body.velocity.y = -300;

}

This if statement now has has two conditions that need to be true before the
code in brackets will run. The user must be pressing the UP key and the player

23

character must be touching down on one of the platforms. If they are already
jumping they will be in the air, and the player.body.touching.down property will
be false and the code in the conditional block won’t run.

Checking our Code
Have a look at the following Code area to check your code against what we
think you should have. https://jamm-labs.github.io/ggcp/create-game-space-
chapter/game.js

More on conditionals

As we can see in the code controlling jumping, there can be more conditions
that needs to be true or false before a certain piece of code can run. In the
last chapter we saw how the three options of if, if else and else provide a
flexible way of providing different options of code to run depending on different
user input and other conditions. Now let’s look at the (condition) part of the
statement.

The process for this is known as True / False or Boolean Logic and even though
we are dealing only with different options which are all true or false it can quickly
get confusing. Let’s take a simple example where were are testing if something is
true. We can use the === comparison operator to check this in our conditional
testing statement. Let’s say we are testing to see if it is raining.

if (isRaining === true){
wearCoat();

}

But imagine a situation where we want to check if it is raining OR if the clouds
are dark. If either is true then take a coat out. This could be checked using
the || logical operator - which means OR - to check both conditions.

if (isRaining === true || isDark === true){
wearCoat();

}

However, if we want to check if it raining AND the clouds are dark and we will
only then take a coat out if both are true. This might be structured like this.

if (isRaining === true && isDark === true){
wearCoat();

}

Let’s look at a table from the above resource of the logical operators used here
to help understand them.

Operator Description Example
&& and (x < 10 && y > 1) is true

24

https://jamm-labs.github.io/ggcp/create-game-space-chapter/game.js
https://jamm-labs.github.io/ggcp/create-game-space-chapter/game.js

|| or (x === 5 || y === 5) is false
! not !(x === y) is true

This is a subject that suits learning through doing, through experimenting and
getting things a bit wrong and trying out different options until you get the one
you want. As mentioned previously, there is a resource which is more complete
here. https://www.w3schools.com/js/js_comparisons.asp

+++ title = ‘Ch005 - Adding Movement’ +++

Adding Movement

We are going to jump right into making our game move. You will need to
have followed chapter on Building a World and have that code ready to
follow these stages. If not, see here for the relevant code (you can click on the
Fish image and then Remix on Glitch to pick up from here) https://jamm-
labs.github.io/ggcp/building-a-world-chapter/game.js

Moving our player around the screen
Now we have a player appear, fall to the bottom of the screen and they should
now be standing at the bottom of the game area.

25

https://www.w3schools.com/js/js_comparisons.asp
https://jamm-labs.github.io/ggcp/building-a-world-chapter/game.js
https://jamm-labs.github.io/ggcp/building-a-world-chapter/game.js

Before we start adding platforms or other characters, let’s get our player to move
around the screen using the cursor keys on the keyboard. To move our player
we need to start to work with what we call player input, this is how the player
of the game interacts with what is happening, in this case we want the person
playing the game player to be able to control our game player character using
the arrow keys on the keyboard.

Let’s start with moving left and right. Let’s add the following code to our
update function.

if (game.input.keyboard.isDown(Phaser.Keyboard.LEFT) === true){
player.body.velocity.x = -200;

}
else if (game.input.keyboard.isDown(Phaser.Keyboard.RIGHT) === true) {

player.body.velocity.x = 200;
}

This seems to work up to a point. Changing the velocity.x property to 200 or
-200 when the left or right key is pressed does create movement. However the
player just keeps moving even if we are not pressing down a key. To avoid this
happening we can add one more condition to our update function.

if (game.input.keyboard.isDown(Phaser.Keyboard.LEFT) === true){
player.body.velocity.x = -200;

}

26

else if (game.input.keyboard.isDown(Phaser.Keyboard.RIGHT) === true){
player.body.velocity.x = 200;

}
else {

player.body.velocity.x = 0;
}

This resets the velocity to zero and so stops any left right movement. Putting
this at the start of the update area means that if no key is being pressed, then
this is the default behaviour. To make our player jump we can add another
couple of lines of code.

if (game.input.keyboard.isDown(Phaser.Keyboard.UP)) {
player.body.velocity.y = -200;

}

Now our player can go left and right and jump. This is starting to look like a
real game. You may notice that we can jump even though we are not touching
the ground. We will solve this issue later.

Make it easy to control our speed
The velocity variables control how quickly the player moves. When we create
our game we think it is a good idea to put variables that easily change the
way our game works right at the top so it is easy to change them. We did this
with gravity last time. Lets change our code around to do this. This process of
improving code that does work but could be better is called refactoring.

In the code above our velocity.x and velocity.y is set in the body of the code.
Let’s create variables called velocity_x and velocity_y right at the start of our
code in our global game variables area.

var velocity_x = 200;
var velocity_y = 300;

Now we can swap out the direct mentions of those numbers from the code in
update change the lines as follows. For the x (left and right) value do;

if (game.input.keyboard.isDown(Phaser.Keyboard.LEFT) === true) {
player.body.velocity.x = -velocity_x;

}
else if (game.input.keyboard.isDown(Phaser.Keyboard.RIGHT) === true){

player.body.velocity.x = velocity_x;
}

For the y (up and down) value

if (game.input.keyboard.isDown(Phaser.Keyboard.UP) === true) {
player.body.velocity.y = -velocity_y;

}

27

Checking our Code
You can check what you have in your code with the the completed code for
this chapter here - https://jamm-labs.github.io/ggcp/adding-movement-
chapter/game.js

Understanding ****if statements / Conditionals: ****

One of the key elements of games are Rules. If this happens then do that. Let’s
have a look at first bit the code used to control our player.

if (game.input.keyboard.isDown(Phaser.Keyboard.LEFT) === true) {
player.body.velocity.x = -velocity_x;

} else if (game.input.keyboard.isDown(Phaser.Keyboard.RIGHT) === true) {
player.body.velocity.x = velocity_x;

}

Statements here start with if, else if or else. These are also called conditional
statements. The format of the first part of a conditional (also called if - else)
statement can be expressed conversationally as “if this condition is true, then
do this action”. This can be represented in code pattern as

if (condition) {
action

}

You can see that our code is testing for three statements. This format allows us
to programme a series of possible outcomes into our game. The format here is
like a list of options which the programme runs. It is important to note that
only one of the if, else if, else can run at any one time. You should also know
that there can be as many of the else if options as you want.

There is more to explain how the (condition) part of this process works in
the next chapter. If you want to follow this up to learn more about this
aspect of coding then you can use some of the many online resources that
teach javascript. For example, there is more on conditionals here - https:
//www.w3schools.com/js/js_if_else.asp

+++ title = ‘Ch006 - Adding a Reward’ +++

Adding a Reward
In the last chapter, we talked about not having a real goal for our game. In this
chapter, we put in place a reward, a goal for us to chase. In this case, it will be
to collect coins.

28

https://jamm-labs.github.io/ggcp/adding-movement-chapter/game.js
https://jamm-labs.github.io/ggcp/adding-movement-chapter/game.js
https://www.w3schools.com/js/js_if_else.asp
https://www.w3schools.com/js/js_if_else.asp

Figure 3: core add reward

Creating our Coin
We already know how to add images as sprites to our world. We did that with
the player. Now we need to do the same a coin.

In the preload function add the following code

game.load.image("coin", "https://cdn.glitch.com/07341419-e9df-484f-820f-d6799646cfcd%2F22coin.png");

Before adding any coins to the game. We are going to create a group for all
of our coins called, coins, this will be useful when we program the part of the
game where the player takes the coin. Generally we might want to create groups
of objects when we want the same kind of thing to happen to all the members
in the group. In this case each time our player touches a coin we will want that
coin to disappear.

Add the following code in the create function in our code after where we add
the platforms.

coins = game.add.group();
coins.enableBody = true;

Instead of adding all of our coins one at a time, which we can see would be quite
repetitive, we can use a loop to do the job for us. Let’s add 3 coins to the screen,
spaced every 100 pixels. We will add them at the top, but then add gravity so
that they fall down until they touch a platform. To do this add the following
lines after the code above.

for (var i = 1; i < 4; i += 1) {
var coin = coins.create(i * 100, 0, "coin");
coin.body.gravity.y = 200;

}

Making the coins disappear
At the moment we have something for our player to head for but when they get
there, they just overlap with the coins rather than it seeming like the player

29

takes them. Our next stage is to make them disappear. To do this we rely on
another bit of Phaser physics which is especially for cases like this. Add the
following code at the top of your update function.

game.physics.arcade.overlap(player, coins, takeCoins);

This line will be explained at the end of this chapter but what it means is that
when player and any member of the coins group overlap then run a function
called takeCoins (which we still have to write yet). Now let’s write the code that
runs when that overlap happens. Add this after the update: code has ended.

var takeCoins = function (player, coin) {
coin.kill();

};

Checking our Code
You can check what you have in your code with the the completed code for this
chapter here - https://jamm-labs.github.io/ggcp/add-a-reward-chapter/game.js

Loops and Iterating
When find ourselves doing the same thing over and over again when coding,
there is normally a better way to do this. At times in this guide we do things
the longer way in order to make the code easier to read but here we use a loop
when creating our coins. There are a few ways to do this but one of the more
flexible ways is to create a For Loop which takes three statements. Here is
a summary of some more detailed information on how to use a for loop here -
https://www.w3schools.com/js/js_loop_for.asp

There are three key parts of For Loop, a starting point, a way of knowing when
to end the loop, and a way of changing the loop. Let’s look at a simplified
example of how this is used in our code.

for (var i = 1; i < 4; i++)
{

coin = coins.create(i * 100, 0, 'coin');
}

You can see the following pattern.

for (statement 1; statement 2; statement 3)
{

code block to be executed (normally more than once
}

Very often a for loop will follow the following convention:

• Statement 1 creates a variable often called i for iterator, (to iterate means
to do things more than once).

30

https://jamm-labs.github.io/ggcp/add-a-reward-chapter/game.js
https://www.w3schools.com/js/js_loop_for.asp

• Statement 2 sets up when the loop will end using some maths, in this case
it will end when i is no longer less than 4.

• Statement 3 runs after every loop and in this case increases the value of i
by one each time.

Each time the loop happens, the result will be different as i increases in value in
each loop. If i starts off at 1 and increases by one each time the loop runs until
i is no longer less than 4, it will run three times. Let’s chart out how it will be
different.

coin = coins.create(i * 100, 0, 'coin');

The code above becomes:

1. Loop One: i = 1 : coin = coins.create(1 * 100, 0, ‘coin’); - so coin created
at 100,0

2. Loop Two: i = 2 : coin = coins.create(2 * 100, 0, ‘coin’); - so coin created
at 200,0

3. Loop Three: i = 3 : coin = coins.create(3 * 100, 0, ‘coin’); - so coin created
at 300,0

Making and calling functions
We added our own function to the playState object called takeCoins when the
player overlapped with any coins. This is about the most complicated bit of
coding we need to do to make our first game so let’s take some time to explain
what is happening.

When creating our overlap statement with the following line.

game.physics.arcade.overlap(player, coins, takeCoins);

If we are new to code then there is quite a lot going on here. Overlap() is a
function with several possible parameters. Here we are using just three. These
different parameters can be likened do different holes in a block toy.

31

Let’s look at the specification of the overlap function.

overlap(object1, object2, overlapCallback)

1. object1: The first object or group of objects to check
2. object2: The first object or group of objects to check
3. overlapCallback: An callback function that is called if the objects overlap.

We pass in two objects or groups, in this case the player and the the group of
coins. We also want something to happen when there is an overlap between the
player and any of the coins. This is where the overlap callback parameter comes
in. We don’t need to know a lot about what a callback function is here. But in
a nutshell here is a code that will run if there is an overlap between the player
and a coin. In our case it makes it disappear with the coin.kill() code.

+++ title = ‘Ch007 - Hazards and Enemies’ +++

32

Hazards and Enemies

We need things for our player to avoid to add some challenge to the game. In
this chapter will we learn how to create static hazards and moving enemies.
Because they are both official hazards that zap our player we will put them both
in a group called hazards.

Adding an Animated Hazard
Let’s add a hazard into our game a location and let’s make it move. We will
add a very simple flickering flame. It consists of two frames of animation. They
alternate give the flickering effect. Here is an image of both frames, one besides
the other.

To create an image like this you can use a tool like Piskel which we used in the
first chapter Jumping Right In.

To make our image animated, we will add it as a spritesheet, and specify the
width and height the frames, here 11 pixels wide and 27 high. And after that
we can also load in a sound to play when we hit a hazard. Put this code in
preload:

game.load.spritesheet("hazard", "https://cdn.glitch.com/5d318c12-590d-47a1-b471-92a5dc0aae9d%2Ffire2.png", 11, 27);

Then add the hazard to the game. Again as with the coins in the previous

33

chapter, we will create a group called hazards in case we want to add more
later. Add the following code to create:

hazards = game.add.group();
hazards.enableBody = true;
hazard1 = hazards.create(100, 250, 'hazard');
hazard1.animations.add('flicker', [0, 1], 6, true);
hazard1.animations.play('flicker');

The next stage is to make the player disappear when they touch this flickering
flame hazard. This is done in a similar way to working with the coins but in
reverse. Add the following line to update part of the code.

game.physics.arcade.overlap(player, hazards, hitHazard);

We now need a hitHazard function to disappear our player if they hit a hazard.
Take care to follow the same pattern and to add this after the takeCoins function.

var hitHazard = function(player,hazard) {
player.kill();

};

This does give us win and lose conditions, so hey presto, we have a game. But
either of those options mean we are stuck in a form of limbo, either alive with
nothing to do, or you disappear leaving only the game world. You will have to
refresh the page to progress. Clearly this is not ideal and we’ll deal with that in
the next section.

Restarting our Game
We need something to happen when we hit a hazard / enemy or collect all the
coins. To make things simple let’s just restart the game. To restart our game
when we die we’re going to add a new function called restart() to our code.

var restart = function () {
game.state.start("play");

};

This restarts the currently running game state (we talk more about this later)
called ‘play’.
We now add a line of code to restart the game to our hitHazard() function. It
should now read as follows.

var hitHazard = function () {
player.kill();
restart();

};

We now need to restart the game when we have collected all the coins. This is a
little more complicated and involves creating a new function that goes through.
To do this add the following lines to update:

34

if (coins.total === 0){
restart();

}

This line keep checking to see if there are any coins left and if there aren’t then
then it will restart the game. Be aware that this could cause a bug. If you don’t
include any coins in your game, then it will just keep restarting.

Check your Code
You can check your code against this chapters code demo here - https:/game.js//glitch.com/edit/#!/add-
hazards-chapter

+++ title = ‘Ch008 - Understanding our Game Structure’ +++

Understanding our Game Structure

If you have been following the chapters in the first half of this book we have
been building up our game from scratch bit by bit. Otherwise you may have
been adapting the Grid Game Template and are reading this chapter to find out
more about the structure of our game. You may have been doing a bit of both.
This chapter covers more detail on how our game fits together. In the following
chapters there tutorials for how to add different elements to our game. Here
we will try to bring together the two approaches so that you can continue by
dipping into the rest of the book in what ever order you want to.

How the code of the two approaches is similar and different
If you have been working your way through the chapters then the
you’ll understand the code of the last chapter Adding Hazards which is here
https://jamm-labs.github.io/ggcp/add-hazards-chapter/game.js

Alternatively if you are adapting the Grid Game Template - then the code or
that is here - https://jamm-labs.github.io/ggcp/grid-game-template/game.js

Just about all the code that we have created “From Scratch” by following the
chapters in the first half of this book is in the “Grid Game” Template code

35

https://jamm-labs.github.io/ggcp/add-hazards-chapter
https://jamm-labs.github.io/ggcp/add-hazards-chapter
https://jamm-labs.github.io/ggcp/add-hazards-chapter/game.js
https://jamm-labs.github.io/ggcp/grid-game-template/game.js

but there are some sections of code in the Grid Game that aren’t in our From
Scratch code. So let’s have a look a some of the similarities and differences.

How the code is similar

The code that we have created From Scratch has the following structure more
or less.

global variables
create playState object
-->playState.preload function
-->playState.create function
-->playState.update function
-->takeCoin function
-->hitHazard function
-->restart function
create game states
start main game state

Understanding what happens in each section of this code structure will really
help us when we start to copy and paste new sections of code from to make it
easier to visualise, this structure be mapped out as a diagram below.

36

If you compare the code from the Grid Game there are some extra elements that
you might want to know more about.

Adding Sounds

There are sounds which happen when you touch a coin or a hazard in the Grid
Game code which we don’t have in our from From Scratch code.The process of
adding in sounds is explained in Adding your own Sound Effect. This example
is for a jump sound rather than touching a hazard or coin, but the process is
the same.

Adding Levels

One of the big differences in the Grid Game code is that we have three different
levels. Comparing the code this is first clear when we see the variable currentLevel
in the Global Variables section at the start of our code.

var currentLevel =1;

Later in the code there are some key sections which create our three distinct
levels. First of all we have the grid design sections where you can change the

37

location of the platforms, coins and hazards. For example here are the first few
lines of the design for level 1.

// Design the level. x = platform, o = coin, h = hazard.
var level1 = [

" ",
" ",
" o ",
" ",
" xxxxx ",

In technical terms this level one variable now has a data structure of an array. We
don’t need to know much about arrays at this level but it is worth remembering
that they are useful for doing things efficiently in combination with loop code
structures. In fact that is what needs to happen next in our code.

Next step is to send the level data to a loop to turn all of our x’s, o’s, and h’s
into platforms, coins and hazards on the screen. We have a separate function
which does this work called. Here are the first few lines of this function, for the
full version you can look at the code of the Grid Game.

function loadLevel (level) {
for (var i = 0; i < level.length; i = i + 1) {

for (var j = 0; j < level[i].length; j = j + 1) {
if (level[i][j] === "x") {

// Create a wall and add it to the 'platform' group

Are you still paying attention? Good, because the next part is important! :)

To decide what level gets loaded there is a conditional if statement that checks
what the currentLevel variable is and then sends the right level data to the
loadLevel function.

if (!currentLevel || currentLevel === 1) {
loadLevel(level1);
// add extra code for just level one here

} else if (currentLevel === 2) {
loadLevel(level2);
// add extra code for just level two after here

} else if (currentLevel === 3) {
loadLevel(level3);
// add extra code for just level three after here

}

So why is this so important? This is the section of your project that you will
add new code into if you want to add new things to just one level of your game.
Yes it’s that important that it’s right there in the code comments. There is more
information on how to do this works in Adding More Levels.

38

Navigating Levels

As there are several levels, there is also a way to navigate between levels. While
both sections have a similar hitHazard function which restarts the play state,
there is a bigger difference in the code that checks if there are any coins left.

if (coins.total === 0) {
nextLevel();

}

This check now calls a new function called nextLevel which gets called. This
function increases the level number by one and then restarts the game

var nextLevel = function () {
currentLevel = currentLevel + 1;
game.state.start("play", true, false, currentLevel);

};

There are some more parameters in the line which restarts the play state. It’s
the last one, currentLevel, that is important here, as we are passing the new
level value along as the play state starts. This means that level 2 will be loaded
up.

And that’s not all. We need to make a similar change to our restart function
too.

var restart = function () {
currentLevel = 1;
game.state.start("play", true, false, currentLevel);

};

In this example the currentLevel value gets set back to one so you have to start
from the beginning again if you hit a hazard. Harsh!

Getting ready to Cut and Paste our Code Patches
The second half of this book has a lot of code examples which you and copy and
paste into your own project.

39

This process is a lot like cutting out pieces of a magasine and pasting them into
a collage or cutting our fabric patches and sewing them onto a piece of clothing.
There are step by step instructions and your the different parts of your code are
a bit like a dress pattern that you cut out and sew together.

As you start this process you are bound to make plenty of mistakes and get
pretty confused, but stick with it. As you progress you will start to notice
patterns that you have followed before and it will start to seem more familiar.

Remember, you are new at this! If you were sewing your first jacket, then
normally you would follow a pattern designed by someone else. In the same way,
you also don’t have to start off making your own games from scratch, lets follow
some patterns. We can still make it our own through what patterns we choose
to put together, the characters and stories we imagine, and the graphics and
sound we create.

Getting Started adding new Game Elements
As described in the chapter choose your adventure there are three main groupings
for new game elements that you can add to your project. Game Mechanics,
Game Space, Game Polish.

To get started we suggest the following starter projects.

• Game Mechanic: Add Moving Enemies

• Game Mechanic: Jump on Enemies

• Game Polish: Adding your own Sound Effects
• Game Polish: Adding Animations to your Character

• Game Space: Add your own Background Image

40

• Game Space: Add a Game Over State

For a larger list of what’s available have a look a the chapter list of this book
or use this page for a quick set of links to the code examples. http://ggc-
examples.glitch.me/

If you like the process of stepping through code that someone else has created in
a logical way then I would suggest following this more advanced tutorial from
Belen Albeza from Mozilla using Kenny’s graphics. I’ve used the ideas and the
game art a lot for this example. That tutorial is a great next step if you want to
take the knowledge from this beginner book further. It is also structured in a
way more like a web professional would do it.

+++ title = ‘Ch009 - Game Mechanic: Add Moving Enemies’ +++

Game Mechanic: Add Moving Enemies

In this section, we’ll look at adding new enemies and making them move.. To
create the movement we will use a process called tweening to do this. Our aim
is to make the enemy appear in one place, and then for it to move back and
forth making it difficult to get past.

41

http://ggc-examples.glitch.me/
http://ggc-examples.glitch.me/
https://mozdevs.github.io/html5-games-workshop/

What we need to know and what we will do
To be able to do this step it would help if you knew about the following from
this book;

• Understand the core structure of our game and sequencing - see Building
a World

• Collision detection using overlap() function- see Adding a Reward
• Already set up an enemies group which kill our player if touched - see

Hazards and Enemies

Create an image for your Enemy and import it to your project

You can use a pixel art tools like Piskel or something similar to create a single
frame enemy to more around the screen. You should then export this from
Piskel as a PNG spritesheet and upload it to the assets folder of your project on
glitch.com. There is help on how to upload in Add a Background.

Going over the code

The code for a minimal example of the Moving Enemies game mechanic is
shown here - https://jamm-labs.github.io/ggcp/sgte-example-moving-
enemy/js/game.js

This tutorial assumes you already have an enemies group and the code in update
which makes your player disappear if touched.

42

https://en.flossmanuals.net/phaser-game-making-in-glitch/_edit/#building-a-world
https://en.flossmanuals.net/phaser-game-making-in-glitch/_edit/#building-a-world
https://jamm-labs.github.io/ggcp/sgte-example-moving-enemy/js/game.js
https://jamm-labs.github.io/ggcp/sgte-example-moving-enemy/js/game.js

Anywhere in the Playstate.preload function add the line:

game.load.image("newenemy", "https://cdn.glitch.com/05027ea3-25db-40c7-803e-2f710bf696a1%2Fhazard.png?1549457791750");

If you want to add your own image for this moving enemy then be sure to change
the link to the image in this line of code.

In Playstate.create function, after the code where you add the enemies group
to the game, add the lines:

var enemy1 = game.add.sprite(370, 320, "newenemy");
enemies.add(enemy1);

Adding our enemy to the enemies group makes sure that it follows the normal

43

rules for our enemy, normally that is that if our player hits the enemy something
happens. Now let’s start to add some movement by adding a tween. A tween is
a flexible way of controlling the properties of our game objects that are displayed
on the screen. In this case we will alter the position of the enemy object.

Add these lines in the Playstate.create function after you have added your
enemy1.

var tween1 = game.add.tween(enemy1);
tween1.to({x:170, y: 320}, 2000, null, true, 0,-1,true);

The tween code above will move our enemy to the position 170 pixels in from
the left and 320 pixels down from the top, and it will take two seconds (2000
miliseconds) after the game starts. When it gets there it will move back and not
stop doing it. Have a play with those figures to get the effect you want and to
place your enemy where you want it to appear.

Taking it Further

To take this game mechanic further you may want to ;

• animate your enemy - see Add Animation to your Characters

• created a new sound to play when you hit this hazard - see Adding our
own Sound Effects

.

+++ title = ‘Ch010 - Game Mechanic: Jumping on Enemies’ +++

Game Mechanic: Jumping on Enemies
The game mechanic of jumping on enemies to get rid of them has been made
very popular by Mario games. It is a great way to use the jumping dynamic in a
creative way. We can use the same technique as many Mario games use to do
this. An enemy will kill our player unless our player is falling when they make
contact.

44

What we need to know and what we will do
Our mechanic relies on us being able to check if we are jumping on our enemy.
We will do this by checking to see if our player is on the way up or coming down
from a jump.

To be able to do this step it would help if you knew about the following from
this book;

• Adding Physics and Gravity - see Building a World
• Collision detection using overlap() function- see Adding a Reward

Going over the code:

The code for a minimal example of the Jumping on Enemies game mechanic
is shown here - https://jamm-labs.github.io/ggcp/game-mechanic-jump-on-
enemies/game.js

In playState.preload add a line which creates a new type of enemy.

45

https://jamm-labs.github.io/ggcp/game-mechanic-jump-on-enemies/game.js
https://jamm-labs.github.io/ggcp/game-mechanic-jump-on-enemies/game.js

game.load.image("newenemy", "https://cdn.glitch.com/05027ea3-2f71-hazard.png");

In playState.create add the following code either towards the end the function

var enemy1 = game.add.sprite(370, 320, "newenemy");
enemy1.type = "spider";

Have a look at the updated hitHazard function for the code that checks to see
if the player is coming down from a jump by seeing if the y axis velocity is less
than 0 and if the enemy type is ;

var hitHazard = function (player, hazard) {
if (hazard.type === "enemy" && player.body.velocity.y > 0){

// if (player.body.velocity.y > 0){
hazard.kill();

}
else {

player.kill();
restart();

}
};

In the code above the if statement makes checks to see if the enemy is of a type
of spider. This is because you may have other possible different hazard types
might be in the group. Some might be more static hazard types like a cactus.
You can use this approach if you want to use a different types of enemy to your
game. If that is not the case then you can use the more simple line which is
commented out in the code example above.

That’s it. We hope you enjoy adding this game dynamic to your game to jump
on enemies.

+++ title = ‘Ch011 - Game Mechanic: Add a Countdown Timer’ +++

Game Mechanic: Add a Countdown Timer
One key game mechanic of video games is to add challenge to a game by making
the player complete something within a certain time. In this section we will do
this with a simple count down timer.

46

Figure 4: game mechanics timer

What we need to know and do
Our count down timer will be visible in the top left. When it counts down to
zero then it will trigger the starting of the game over state. This mechanic using
the following techniques which are covered in more detail in other parts of this
book;

• Game States - see Adding Game States
• Timer Events - see Adding Animated Game Scenes

Going over the code:

The code for a minimal example of the Adding A Timer game mechanic is shown
here - https://jamm-labs.github.io/ggcp/game-mechanic-timer/game.js

Let’s jump into the details, to look at the following groups of code. First add
this code block anywhere in your playState.create function

this.timeLimit = 5;
this.timeText = game.add.text(10, 10, "0:00");
this.timeText.fill = "#000000";
this.timer = game.time.events.loop(1000, tick, this);

This code block;

• defines how long the time limit will be
• adds an empty text object to the game which will be updated later

47

https://3m.flossmanuals.net/#adding-game-states/
https://jamm-labs.github.io/ggcp/game-mechanic-timer/game.js

• sets the colour of the text
• creates a timer event object which will run the tick() function every 1000

miliseconds (which is one second)

Now, add these functions to your game at the end of your code.

var tick = function () {
this.timeLimit--;
var minutes = Math.floor(this.timeLimit / 60);
var seconds = this.timeLimit - (minutes * 60);
var timeString = addZeros(minutes) + ":" + addZeros(seconds);
this.timeText.text = timeString;
if (this.timeLimit === 0) {

restart;
}

};

var addZeros = function (num) {
if (num < 10) {

num = "0" + num;
}
return num;

};

var outofTime = function () {
var splatNoise = game.add.audio("splat");
splatNoise.play();
game.state.start("play");

}

48

Let’s look at what is in the tick() function and a following function to add Zeros
to our timer. We can see here that every time tick is called every second it;

• reduces our time limit by one second
• then does some formatting of the time to create a easy to read number
• updates the text of our timer with the friendly version of the time coundown

(using the addZeros() function to help it)
• checks to see if the time is down to zero yet and if it does calls the restart

function to restart game
• the addZeros function just adds zeros to numbers when we need them so

ten seconds is 00:10 and not 00:1

+++ title = ‘Ch012 - Game Mechanic: Longer Jumps if Holding Jump Down’
+++

Game Mechanic: Longer Jumps if Holding Jump
Down
In the game Super Mario Brothers. When Mario jumps you can make him jump
for longer by holding down the jump button. This allows for a greater feeling
of control and lets you play around with your level design to make for more
complex challenges.

What we need to know and do
Our mechanic depends us writing some code to check how long the player has
been holding down the jump key and it will change the players velocity based on

49

that value. To do this it’s helpful to know about the following game elements;

• Adding Physics and Gravity - see Building a World
• Working with player input - see Adding Movement

Going over the code:

The code for a minimal example of the Variable Jump Height game mechanic
is shown here - https://jamm-labs.github.io/ggcp/mechanic-variable-jump-
height/game.js

In the global variable area at the start of the code see that there is a variable
declared there called jumpTimer.

var jumpTimer = 0;

In the Playstate.update function, we add code which controls the variable
height of the player jump.

if (game.input.keyboard.isDown(Phaser.Keyboard.UP)) {
if (player.body.touching.down && jumpTimer === 0) {

// jump is allowed to start
jumpTimer = 1;
player.body.velocity.y = -300;

} else if (jumpTimer > 0 && jumpTimer < 31) {
// keep jumping higher
jumpTimer++;
player.body.velocity.y = -300 + (jumpTimer * 5);

}
}
else {

// jump button not being pressed, reset jump timer
jumpTimer = 0;

}

The code adds an extra if statement into the game which makes a difference
between if the player has just touched the jump button or if they are pressing
down on the jump button. In the first case the jumpTimer would be at 0 and
the code makes the player jump and starts the clock on the jumpTimer variable.
The next case where the button is being held down the timer value increases is

50

https://3m.flossmanuals.net/#building-a-world/
https://3m.flossmanuals.net/#adding-movement/
https://jamm-labs.github.io/ggcp/mechanic-variable-jump-height/game.js
https://jamm-labs.github.io/ggcp/mechanic-variable-jump-height/game.js

of importance in the line – player.body.velocity.y = -300 + (jumpTimer * 5);–
and this increase means that the players velocity is slowed down closer to 0 the
longer the button is pressed.

This solution was found at this blog post on amphibian.com which goes into
more details about the coding process.

That’s it. We hope you enjoy adding this game dynamic to your game.

+++ title = ‘Ch013 - Game Mechanic: Smaller Sprite Collision Boxes’ +++

Game Mechanic: Smaller Sprite Collision Boxes
We can play with collision effects with body size of player / enemy which can
make the game seem fairer and more forgiving for players. This can really help if
you are designing levels that are hard and of the shape of your sprite animations
sometimes creates a big box area.

Check the Code: what we need to know and do
Our mechanic relies on us being able to check if we are jumping on our enemy.
We will do this by checking to see if our player is on the way up or coming down
from a jump. To do this we’ll need to know about the following game elements;

• Adding Physics and Gravity - see Building a World
• Collision detection using overlap() function- see Adding a Reward

51

https://thoughts.amphibian.com/2015/11/tuning-jumps-in-my-phaser-platformer.html
https://3m.flossmanuals.net/#building-a-world/
https://3m.flossmanuals.net/#adding-a-reward/

Going over the code:

The code for a minimal example of the Smaller Sprite Collision Boxes game
mechanic is shown here - https://game-mechanic-smaller-sprite-collision-
boxes.glitch.me/

The size of or player is when we add it in the example above is 46 wide by 42
high.

Have a look at an updated create function for the code that alters the collision
body box of the player. The following code is added after the player is added to
the game.

player.body.setSize(26, 37, 5, 5);

There are four parameter here setSize(width, height, offsetX, offsetY) . We can
see that we have set a new height and width of the Body of this sprite. In this
case we taken 10 pixels off each. This does not affect how it look but does affect
when it collides with other sprites.

If we don’t put in the offset values for example if we use the following code.

player.body.setSize(26, 37, 0, 0);

then that new body will be anchored at the top left. This is not ideal also. You
may also notice that they player sinks into the ground.

So let’s reset this. To make this more useful to us as game designer we centered
this new collision box by using the offset values 5 and 5. In other word this
shifted the box 5 px over to the right (+5x) and five down (+5y). Our player no
longer sinks into the ground and the new collision box seems more fair.

Collision boxes and Hazards

The same technique can be applied to an enemy. The collision box has been set
to be in the bottom right of the hazard to make it very easy to jump over from
left to right..

That’s it. We hope you enjoy adding this game dynamic.

Bonus read: you can have a look at this great article on the more advanced
ways of creating 2D platform games.

+++ title = ‘Ch014 - Game Mechanic: Extra Lives’ +++

Game Mechanic: Extra Lives
To allow our game levels to be more challenging but still give our game player a
chance we can give extra lives.

52

https://game-mechanic-smaller-sprite-collision-boxes.glitch.me/
https://game-mechanic-smaller-sprite-collision-boxes.glitch.me/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/
http://higherorderfun.com/blog/2012/05/20/the-guide-to-implementing-2d-platformers/

What we need to know and what we will do
There is some background knowledge in this book that will be useful for us in
getting this mechanic to work;

• Adding Sprites in Groups - see Create a Game Space
• Working with Loops - see Adding a Reward
• Working with Levels - see Adding More Levels
• Understand spritesheet images - see Adding an Animated Character

You can use the following stages of this tutorial as a check list;

• Create an animated sprite which displays how many lives we have left in
Piskel or similar

• Create new variables in our list of global variables called lives and livesSprite

• Add code to our create function to check how many lives we have and
display the right

• Add code to our hitHazard function to take off a life if the player is zapped
and restart the game with one less life but at the same level

Create an image for your Lives Indicator and import it to your project

You can use a pixel art tools like Piskel or something similar to create an image
with a single frame for each of your lives. And example is shown below.

53

https://3m.flossmanuals.net/#create-a-game-space/
https://3m.flossmanuals.net/#adding-a-reward/

You should then export this from Piskel as a PNG spritesheet and upload it to
the assets folder of your project on glitch.com

There is help on how to do these stages in the tutorial called Add Animation to
your Characters.

Going over the code:

The code for a minimal example of the code for adding levels extra lives for your
player is here - https://jamm-labs.github.io/ggcp/sgte-extra-lives/game.js

Add a new global variable at the start of our code. It is located outside any
particular function as they are needed by more than one of our functions;

var lives = 3;

The lives variable keeps a track of how many lives we have left.

Now add this line to load in an image as a spritesheet which will change when
you lose a life into preload function.

game.load.spritesheet("lives", "https://cdn.glitch.com/df3d4bd4-a145-4f00-bfad-97b20729e2ee%2Fanimated%20heart.png",48,12);

You may want to create your own image which does this.

Next, in the create function add the following lines which add our lives image
to the screen in the top left and changes it depending on how many lives are left.

livesSprite = game.add.sprite(20, 20, "lives");

if (lives === 3){
livesSprite.animations.frame = 0;

}
else if (lives === 2){

livesSprite.animations.frame = 1;
}

54

https://jamm-labs.github.io/ggcp/sgte-extra-lives/game.js

else if (lives === 1){
livesSprite.animations.frame = 2;

}

Then when the play is happening and the player hits a Hazard we need to take
off a life and restart the game with one less life but at the same level. We already
have a function which gets called when our player overlaps with a hazard called
hitHazard so we can add the following code to it.

var hitHazard = function (player, enemy) {
splatNoise.play();
if (lives > 1) {

lives--;
game.state.start("play", true, false, lives, currentLevel);

}
else {

lives = 3;
currentLevel = 1;
game.state.start("play", true, false, lives, currentLevel);

}
};

We have a conditional statement which runs when the number of lives is more
than 1. In this case, when we start our play state there is the option to pass the
value of lives and the currentLevel along, this allows us to not start from level
one.

When the lives variable reaches 1 then you are on your last life. Then when you
hit a hazard, the second condition runs which resets the values of lives to three
again and resets the currentLevel variable to be 1. This has the effect of starting
the game again at the beginning with three lives.

Other ideas to extend this mechanic

Other ideas to extend this mechanic could include;

• Adding a Game Over state - see Adding Game States

+++ title = ‘Ch015 - Game Mechanic: Player Health Meter’ +++

Game Mechanic: Player Health Meter
The game mechanic of having a health meter which is depleted when you come
into contact with enemies and their projectiles can be very welcome if you have
a challenging layout of levels. This can stop your game from being too hard.

55

What we need to know and what we will do
Our health mechanic is going to build on the code we are using when our player
collides with a hazard. As such you may need to know about.

• Collision detection using overlap() function- see Adding a Reward
• Using game timers - see Hands On - Creating our Starting Cut Scene in

Adding Game States

You can use the following stages as a checklist;

• create a graphical health bar
• reduce the level of this health bar as our player gets hit

• move our player to the side of the enemy and stop their health from
draining too much all the time the player is overlapping with the enemy

• restart the game when the health bar reaches zero

Going over the code:

The code for a minimal example of the Player Health Bar game mechanic is
shown here - https://jamm-labs.github.io/ggcp/player-health-meter/game.js

In our create function , after we have added our player to the game, we can
set the health of our player to be a value of 100;

player.health = 100;

Health is actually a built in property of Phaser and when that reaches zero our
player will disappear automatically. But let’s add some code anywhere in our

56

https://jamm-labs.github.io/ggcp/player-health-meter/game.js

update function to check when health is down to zero and restart the game.

if (player.health === 0) {
restart();

}

Next we need to build and display the graphical health bar and this is done by
calling the following function one at the end of the create function.

var createHealthBar = function () {
meters = game.add.group();

// create a plain black rectangle to use as the background of a health meter
var meterBackgroundBitmap = game.add.bitmapData(20, 100);
meterBackgroundBitmap.ctx.beginPath();
meterBackgroundBitmap.ctx.rect(0, 0, meterBackgroundBitmap.width, meterBackgroundBitmap.height);
meterBackgroundBitmap.ctx.fillStyle = '#000000';
meterBackgroundBitmap.ctx.fill();

// create a Sprite using the background bitmap data
var healthMeterBG = game.add.sprite(10, 10, meterBackgroundBitmap);
healthMeterBG.fixedToCamera = true;
meters.add(healthMeterBG);

// create a red rectangle to use as the health meter itself
var healthBitmap = game.add.bitmapData(12, 92);
healthBitmap.ctx.beginPath();
healthBitmap.ctx.rect(0, 0, healthBitmap.width, healthBitmap.height);
healthBitmap.ctx.fillStyle = '#FF0000';
healthBitmap.ctx.fill();

// create the health Sprite using the red rectangle bitmap data
health = game.add.sprite(14, 14, healthBitmap);
meters.add(health);
health.fixedToCamera = true;

};

The code above creates a black box to act as the background and then a red
box to act as the health meter. Now have a look at the updated hitHazard part
of our code (if you don’t have one you should add one);

var hitHazard = function (player, hazard) {

if (!player.immune) {
player.damage(10);
updateHealthBar();
player.immune = true;
game.time.events.add(200, function () {player.immune = false;}, this);

57

}

if (player.body.position.x < enemy1.body.position.x) {
player.body.velocity.x = -200;

}
else {

player.body.velocity.x = 200;
}

};

What’s to stop our player from being drained of all health points in one go,
when the player is zapped by overlapping with a hazard we need to set a quick
time limit where they can’t get zapped again. Let’s called this time when the
player is immune from harm. In the code above if the player isn’t immune -
if (!player.immune) - then we zap the players’ health by 10 points and make a
call to a function to update the health bar, to reduce the value a bit. We also
add code to say that the player is now immune and will stay that way for 200
miliseconds (0.2 of a second).

This time is enough to prevent this section of code running again until we can
run the next code which moves the player out of the way of the enemy. It checks
to see if the player is more to the right or to the left of the enemy using the
player.body.position property, and then changes their velocity value to bump
them out of the way of the enemy. Doing this then stops the hitHazard function
from being called as the player and the enemy are no longer overlapping.

There is also another thing we need to add to the update function in our code.
We need to stop the game player from controlling our player character when it
is immune. Have a look at the extra conditions which makes this happen. One
example is show below. Be sure to update all of them!

if (!player.immune && game.input.keyboard.isDown(Phaser.Keyboard.LEFT)) {
player.body.velocity.x = -300

}

That’s it. We hope you enjoy adding this game dynamic to your game

Follow up Resources: If you want find out more about the code for doing
the maths and the process to update the health meter then there is a more in
depth look at this dynamic at the website where the code was originally found -
https://thoughts.amphibian.com/2015/12/putting-health-meter-in-my-phaser-
game.html

+++ title = ‘Ch016 - Polish: Adding our Own Sound Effects’ +++

58

https://thoughts.amphibian.com/2015/12/putting-health-meter-in-my-phaser-game.html
https://thoughts.amphibian.com/2015/12/putting-health-meter-in-my-phaser-game.html

Polish: Adding our Own Sound Effects
Adding our own sound effects can be a great way to bring our own creativity to
a game that we are making or altering. There are lots of fun ways to create or
even record your own sounds.

Your game may already play a sound when we reach a coin or hit an enemy. So
in this quick guide we first over how to replace these sounds with your own new
sounds and then look at how to create a new sound to the game when you reach
a new level.

Swapping over existing Sounds
You can create your own sounds in many ways. One good online tool is ChipTone
- http://sfbgames.com/chiptone/

59

http://sfbgames.com/chiptone/

Play around and when you have a sound you like click on SAVE WAV to save
the sound to your computer

Now upload your sound to the assets section of your Glitch remix project you
can find the assets link on the left of your screen, after clicking on that look for
the little upload button on the main part of the page.

60

You can now click on the image of the uploaded sound and click on the Copy
Button this will copy the location of the image ready for you to paste it later.

Now return to your game code and change over the URL of the coin sound in
the preload section.

Going over the code
The code for a minimal example of how to add your own sounds to the game
mechanic is shown here - https://jamm-labs.github.io/ggcp/polish-add-your-
own-sounds/game.js

First we need to add a new variable into our list of game variables at the start
of our code before any of the functions.

var jumpNoise;

Then let’s load a jump sound into the game in the Playstate.preload function
of our main game.

61

https://jamm-labs.github.io/ggcp/polish-add-your-own-sounds/game.js
https://jamm-labs.github.io/ggcp/polish-add-your-own-sounds/game.js

game.load.audio("jump", "https://cdn.glitch.com/80a5a58a-af34-4348-81df-7c05260f8ceb%2Fjump.wav");

If you want to add your own sound then be sure to replace the link in this code
with your own link from your Assets section.

Next let’s add this sound to the game, ready to be used. Add the following
anywhere in the Playstate.create function.

jumpNoise = game.add.audio("jump");

Finally, we need to find where to trigger this jump sound to play. In this
case, we want it to be in our update function in the if / conditional statement
which checks to see if the player is pressing the jump key and if they are then
increases the velocity to ping the player up in the air. Find the following code in

62

Playstate.update function and alter it by adding in the jumpNoise.play() code
as shown below.

if (game.input.keyboard.isDown(Phaser.Keyboard.UP) && player.body.touching.down === true) {
player.body.velocity.y = -300
jumpNoise.play()

}

+++ title = ‘Ch017 - Polish: Add Animation to your Character’ +++

Polish: Add Animation to your Character
Animating our player so it looks like it is running is made fairly easy by the
Phaser framework. If we had to start coding this whole process from scratch then
we would be here a long time. Luckily making simple animations is something
that many game players want to do so we have some good coding tools for it.

What we need to know and what we will do
To be able to do this step it would help if you knew about the following from
this book;

• Understand the core structure of our game - see Building a World
• Understand Conditionals - see Adding Movement

63

https://en.flossmanuals.net/phaser-game-making-in-glitch/_edit/#building-a-world

Creating an Animated Character in Piskel

Let’s use the Piskel tool to it an animated character if we want to do so. If you
like the character in the picture below then here is a link to it on the Piskel
website -
https://www.piskelapp.com/p/agxzfnBpc2tlbC1hcHByEwsSBlBpc2tlbBiAgK
CogPjNCgw/view

You should be able to click on Edit Sprite to see how the “run cycle” of the
hero is made.

There is a great tutorial on the whole process of making a running pixel art
character here if you want to go into it in detail. http://www.lessmilk.com/tut
orial/pixel-art-run-cycle

Create your character by adding frames (try cloning them and altering them)
and when you are ready then export an image of your animation and follow the
steps below to make it animated. Only think about your character running right
for now.

When you are happy with it then you can save it to your computer by clicking
on the Export button > PNG > Download button.

64

https://www.piskelapp.com/p/agxzfnBpc2tlbC1hcHByEwsSBlBpc2tlbBiAgKCogPjNCgw/view
https://www.piskelapp.com/p/agxzfnBpc2tlbC1hcHByEwsSBlBpc2tlbBiAgKCogPjNCgw/view
http://www.lessmilk.com/tutorial/pixel-art-run-cycle
http://www.lessmilk.com/tutorial/pixel-art-run-cycle

Now upload it to the Assets part of your glitch.com project. There is information
on how to do that in the Add a Background section.

Going over the code
The code example for adding an animated character is here https://jamm-
labs.github.io/ggcp/polish-add-an-animated-player/game.js

To understand how this sprite sheet works, first of all we are going to add this to
project in the wrong way. Don’t worry we’ll fix it up quickly. In the preload
function area of code, add or replace the line of code which loads in a player
image. You can copy this code to use our example player, or you can then alter
it to swap in your own.

game.load.spritesheet("player", "https://cdn.glitch.com/5d318c12-590d-47a1-b471-92a5dc0aae9d%2Fhero.png?1539353651099")

Now when you Show the Live page you will see the following image of lots of
different version of our hero.

65

https://jamm-labs.github.io/ggcp/polish-add-an-animated-player/game.js
https://jamm-labs.github.io/ggcp/polish-add-an-animated-player/game.js

We can use these different frames to create an animation in phaser. To do this
we need to change the way we are bringing this image into the game.

Again in your preload function, change your line like the one below by adding
in the two extra parameters, the numbers 36 and 42.

game.load.spritesheet("player", "https://cdn.glitch.com/5d318c12-590d-47a1-b471-92a5dc0aae9d%2Fhero.png?1539353651099",
36, 42);

This brings the image in as an image 36 pixels wide by 42 high which is right
for our example but if you use your own, your image may be of a different size.
For example, the default size in Piskel is 32 pixels wide and 32 Pixels high. If
you are using your own image be sure to change those numbers.

Next to make the player seem like they are walking then we need to add some
more code to tell phaser which of the frames to use. The following frames tell
phaser to use some frames when our player is running, and frame zero when
stopped so add the following to your create function.

player.anchor.set(0.5, 0.5);
player.animations.add("stop", [0]);
player.animations.add("run", [1, 2], 8, true); // 8fps looped
player.animations.play("stop");

Two animations are created here. The first fame, frame [0] is used for the stop
animation. The next two [1,2] are used to show our player running. Depending

66

on how many frames your animation has you may need to change
these frame numbers around. Now in the update function, we need to
add the following code to activate the walking animations when the cursor keys
are being pressed. We also need to tell the animation to stop when there is no
key being pressed. To do this add the following user-input lines anywhere in the
update function.

if (player.body.velocity.x !== 0) {
player.animations.play("run");

}
else{

player.animations.play("stop");
}

To explain the code above, if the player is moving left or right then the velocity
will not be zero, so we start the run animation. Otherwise, play the other
animation where our character is stopped. This works but the player is always
facing the same way. To flip the player over then add the following lines.

if (player.body.velocity.x < 0) {
player.scale.x = -1;

}
else if (player.body.velocity.x > 0) {

player.scale.x = 1;
}

We can see there that there isn’t a flip command but setting the player body
scale property to a minus figure has that effect.

Intentionally Glitching your game can be fun. The process of flipping described
above only works neatly if what something called the Anchor point of the sprite
is set to be the middle of the sprite instead of the default value of the top left.
This means that we can create an interesting glitch in our game by adding the
following line to our create function after the player is added.

player.anchor.set(0.5, 0.5);

Try it out in your game and see how our hero glitches out.

Optional - Adding more animations
Another way to make our player face the direction that they are moving is to
create your animation so that it has frames which point the other direction.
There is a Flip tool which lets you do that in Piskel (on the right with 2 tall
triangles).

If you take this approach then you will need to create new animations - say
“runleft” and “runright” and choose the appropriate frames. They you will need
to change the code above so that instead of flipping the character

67

+++ title = ‘Ch018 - Polish: Add Soundtrack Music’ +++

Polish: Add Soundtrack Music
Adding background music to a game gives a lot of advantages. You can really
set the tone of the kind of game you are creating.

Check the Code: what we need to know and do
The code for a minimal example of the Add a Music Soundtrack game polish
element is shown here -
https://jamm-labs.github.io/ggcp/add-polish-soundtrack-archive/game.js

We can add a sound track to our game to act as a bit of background music or a
sound effect while we play. For this demo let’s just add a noise that lasts for 2
seconds.

To do this we load a new sound to our project in preload with the following linke

game.load.audio('backgroundnoise' , 'https://cdn.glitch.com/04f51d70-ab26-4960-8e87-12f2aa251cff%2Fbackground_noise.wav');

Then we can create a variable with that loaded noise with the following lines in
our playState.create function

var backgroundNoise = game.sound.add("backgroundnoise", 1, true);
backgroundNoise.play();

The game.sound.add() function here has three parameters.

1. The “backgroundnoise” here is the name of the sound as defined in preload

68

https://jamm-labs.github.io/ggcp/add-polish-soundtrack-archive/game.js

2. The number 1 here is the volume of the sound. To make it lower you could
halve the volume by changing it to 0.5 for example.

3. the true value here says if we should loop this sound or not, false plays it
once, true means it does play over and over again.

The default for the volume parameter is level 1 (100%), and the default value
for loop is false, so it only plays once.

So in this case we have to include a value for the volume parameter if we want
to set the third loop parameter to true or the function will get confused.

You may notice a glitch! Adding a background track in this way may result
in multiple versions of your tune being played if you get killed. To avoid this
add the following line before the two lines adding and playing your audio in
playState.create.

game.sound.stopAll();

This will stop the multi versions of your song playing at the same time.

+++ title = ‘Ch019 - Polish: Animate Sprite when Zapped’ +++

Polish: Animate Sprite when Zapped
Death and killing seem like strong words so let’s talk about getting zapped.
Being zapped loses it’s sting when you can be reborn so easily. But to give the
sense of dying rather than just disappearing we can add an animation to our
player or enemy sprites so the gamer really know what is going on.

69

Check the Code: what we need to know and do
Better death here needs us to alter the function called when player and enemy
overlaps. Let’s concentrate on animating the enemy, we need to change the
sprite animation but also add a delay into the process of restarting the game
so we can see the animation play out. The code for a minimal example of the
Animate Sprite when Zapped game polish element is shown here - https://jamm-
labs.github.io/ggcp/add-polish-animate-zapped-sprite/game.js

Going over the code:

First we need to make sure we are adding an an image with more than one frame
in it as an animation in our playState.preload area. Be sure to remove any
other mentions of a player here. Here is an example.

game.load.spritesheet("player", "https://cdn.glitch.com/21c64338-5965-4de0-a478-2af819796de2%2Fpacmansprites.png",16,16);

We need to add a die animation in the playState.create part of the code after
we have added the player to the game. This code does it.

player.animations.add('chomp', [0,1,2], 12,true);
player.animations.add('die', [3, 4, 5, 6,7,8,9,10,11,12,13,14,15,16], 12);
player.animations.play('chomp');

Now have a look at the hitHazard function;

var hitHazard = function (player, enemy) {
splatNoise.play();
enemy.kill();
player.body.velocity = 0;
player.animations.play('die');
game.input.keyboard.disabled = true;
game.time.events.add(1200, restart, this);

};

Here a noise is played and then this code gets rid of the enemy the player is
stopped by setting velocity to 0 and the keyboard input is turned off so that we
can’t move the player around anymore. The animation is now played to show
that the player is well and truly zapped.

Then we use a function for a timed event to restart the game. To see that
animation we have to delay calling the restart function. In this case we are
delaying for 1200 miliseconds which is just over a second.

Lastly as we turned off the keyboard input. We need to turn it back on again in
our restart function.

var restart = function () {
game.input.keyboard.disabled = false;
currentLevel = 1;
game.state.start("play", true, false, currentLevel);

70

https://jamm-labs.github.io/ggcp/add-polish-animate-zapped-sprite/game.js
https://jamm-labs.github.io/ggcp/add-polish-animate-zapped-sprite/game.js

};

That’s it. We hope you enjoy adding this element of polish to your game to
animated a zapped sprite.

+++ title = ‘Ch020 - Polish: Screen Shake’ +++

Polish: Screen Shake
Polish: Screen Shake when Zapped
Rather than just disappearing we can add an animation to the whole screen to
give our game player feedback that something bad has happened. We can do
this by shaking the screen.

Check the Code: what we need to know and do

Better death here needs us to alter the function called when player and enemy
overlaps. Let’s concentrate on animating the enemy, we need to change the
sprite animation but also add a delay into the process of restarting the game
so we can see the animation play out. So we’ll need the following background
knowledge;

• Collision detection using overlap() function- see Adding a Reward

The code for a minimal example of the Shake Screen when Zapped game polish
element is shown here - https://add-polish-shake-screen.glitch.me/

71

https://3m.flossmanuals.net/#adding-a-reward/
https://add-polish-shake-screen.glitch.me/

Going over the code: Have a look at an updated hitHazard function - if you
have sounds added to your game etc, be sure not to remove those. Just be sure
to copy and add the lines in bold;

var hitHazard = function (player, enemy) {
player.kill();
splatNoise.play();
game.camera.shake(0.05, 500);
game.time.events.add(1000, restart, this);

};

We just need to add a line about shaking the camera position of the whole game
into the hitHazard function.

You can see that to make this work effectively in our game we replaced the line
calling restart(); in the playState.hitHazard function with a line adding a
time event to wait for one second before restarting the game.

Bonus: If you don’t like the way everything shakes here then the shake effect
can be done only on limited sprites or groups for a demo of that see here.
https://jamm-labs.github.io/ggcp/add-polish-shake-sprites-only/game.js

+++ title = ‘Ch021 - Polish: Explosions using Particles’ +++

Polish: Explosions using Particles
We are going to make our death more dramatic by using particles to make it
look like our player explodes.

72

https://jamm-labs.github.io/ggcp/add-polish-shake-sprites-only/game.js

Check the Code: what we need to know and do
Adding an explsion uses the following knowledge which we covered in another
chapter;

• Collision detection using overlap() function- see Adding a Reward

The code for a minimal example of the Explosions using Particles game polish
element is shown here - https://jamm-labs.github.io/ggcp/add-polish-explosions-
using-particles/game.js

Going over the code:

We make the explosion make it grey as a tribute to Nintendo’s censoring of
Mortal Kombat turning red blood into grey sweat to make the violence less
graphic!.

To do this we import an image of a grey pixel block and name it sweat which is
used by a new function which sets up a “particle emitter”. These little blocks
will be the particle explode out of this emitter.

var setParticles = function() {
sweat = game.add.emitter(0, 0, 20);
sweat.makeParticles('sweat');
sweat.setYSpeed(-150, 150);
sweat.setXSpeed(-150, 150);
sweat.gravity = 0;

};

This code creates a particle emitter, which is suitable as a base for our explosion.
The values (0,0,20) mean that the explosion will start from the centre and and
will have a maximum of 20 particle blocks in the explosion.

Add the following code at the start of the hitHazard function to start the
explosion.

sweat.x = player.x;
sweat.y = player.y+10;
sweat.start(true, 300, null, 20);

This sets up where the explosion will happen, which is a bit above where the
player is, and starts the process.

To make this work effectively in our game we will also need to replace the line
calling restart(); in the hitHazard function with the following line to wait for
one second before restarting the game.

game.time.events.add(1000, restart, this);

Understanding the code

73

https://3m.flossmanuals.net/#adding-a-reward/
https://jamm-labs.github.io/ggcp/add-polish-explosions-using-particles/game.js
https://jamm-labs.github.io/ggcp/add-polish-explosions-using-particles/game.js

start(true, lifespan=0, null, total) - true, means the emitter is an explosion type,
300 is how long it will last, null is if it will repeat so here it won’t it’s a one off,
and 20 is the number of particles that will make up the explosion. .

There is full information in the documentation below:

https://photonstorm.github.io/phaser-ce/Phaser.Particles.Arcade.Emitter.h
tml

https://photonstorm.github.io/phaser-ce/Phaser.Particles.Arcade.Emitter.h
tml#start

+++ title = ‘Ch022 - Game Space: Add your own Background’ +++

Game Space: Add your own Background

Adding our own background can really start to make the game our own. You
can be really creative here by using craft materials or drawing your background
with crayon or paint.

In this tutorial, we look at creating a pixel art background and importing it into
our game.

If you want a quick link to the code to do this you can look at this example: -
https://jamm-labs.github.io/ggcp/polish-add-background-image/game.js

74

https://photonstorm.github.io/phaser-ce/Phaser.Particles.Arcade.Emitter.html
https://photonstorm.github.io/phaser-ce/Phaser.Particles.Arcade.Emitter.html
https://photonstorm.github.io/phaser-ce/Phaser.Particles.Arcade.Emitter.html#start
https://photonstorm.github.io/phaser-ce/Phaser.Particles.Arcade.Emitter.html#start
https://jamm-labs.github.io/ggcp/polish-add-background-image/game.js

What we need to know and what we will do
To be able to do this step it would help if you knew about the following from
this book;

• Understand the core structure of our game - see Building a World

This guide will help you with the following stages; reate an image for your
background, exported that image as a suitable size, upload an image of your
background to your project, add the code to add background.

Creating and Uploading your Images

Create a background in piskel. Create a Sprite. Then Resize to 55 pixels wide
to 40 pixels high.

Draw a simple background and click on Export image button on the right and
click on the PNG tab then Spritesheet file explort > Download. Move the size
slide to be x10 so the image will be 550 by 400 wide.

75

Now upload your sound to the assets section of your Glitch remix project you
can find the assets link on the left of your screen, after clicking on that look for
the little upload button on the main part of the page.

You will then be able to get the address of the image by clicking on it and
clicking the Copy button.

76

Adding our new code:

You can open the code for a minimal example of the code to add a background
image is here - https://jamm-labs.github.io/ggcp/polish-add-background-
image/game.js

We need to load a background image to be ready for our game to use by adding
a line like the following to our preload function

game.load.image("background", "https://cdn.glitch.com/07341419-e9df-clouds-h.png");

Then add the following the create part of the code

var background = game.add.sprite(0, 0, "background");
background.width = 550;
background.height = 400;

If you are not happy with the width or height of your background you can make
alterations here.

That’s it. We hope you enjoy adding this element of polish to your game

+++ title = ‘Ch023 - Game Space: Add Game Over Screen’ +++

Game Space: Add Game Over Screen
The game mechanic of jumping on enemies to get rid of them has been made
very popular by Mario games. It is a great way to use the jumping dynamic in a
creative way. We can use the same technique as many Mario games use to do
this. An enemy will kill our player unless our player is falling when they make
contact.

77

https://jamm-labs.github.io/ggcp/polish-add-background-image/game.js
https://jamm-labs.github.io/ggcp/polish-add-background-image/game.js

Check the Code: what we need to know and do
Our mechanic relies on us being able to check if we are jumping on our enemy.
We will do this by checking to see if our player is on the way up or coming down
from a jump.

To be able to do this step it would help if you knew about the following from
this book;

• Understand how our game structure works - see Understanding our Game
Structure

Going over the code:

The code for a minimal example of the Game Over screen is shown here -
https://jamm-labs.github.io/ggcp/game-over-state-add/game.js the most
simple video / computer games have several states, say an welcome menu, a play
state, a win state and a game over / you lose state. We can add these different
states into our game. At the moment we only have one state our “Play” state.
In our code this is an object called playState.

At the moment, if you win or if you lose the game restarts.

To solve that let’s add code which recognises when you have been zapped by an
enemy and shows a game over screen. Let’s keep the game over screen very
simple and just add some Game Over text and a Timer to restart the main play
state after 3000 miliseconds (3 seconds).

78

https://jamm-labs.github.io/ggcp/game-over-state-add/game.js

Add the following to your code very close to the very end of your code just before
the end lines where you have the game.add.state line.

var gameOverState = {};

gameOverState.create = function () {
this.gameoverText = game.add.text(10,10, "Game Over", "0:00");
this.gameoverText.fill = "#ffffff";
this.time.events.add(3000, this.restart, this)

};
gameOverState.restart = function(){

game.state.start('play');
};

This creates a completely new state with its own functions. We only need create
and restart here. The create function add some text to the screen and then after
2 seconds calls the restart function of this new state. The restart function here
is is similar to our normal one it just restarts the other play state.

Towards the the end of our project code you will see a line containing
game.state.add for our play state, Just after that you can add one for game over
state

game.state.add("play", playState);
game.state.add("gameover", gameOverState);
game.state.start("play");

We also need to change what happens when the player hits the hazard to indicate
it is “game over”. If you are writing your code from scratch, then replace the
line in the hitHazard function which reads game.state.start(“play”); with the
following line which is going to start our game over state;

79

var hitHazard = function () {
player.kill();
game.state.start("gameover");

};

We you may well want to create two more states, one for an opening scene or
starting menu called startState and another called winState for if you win the
game. We haven’t written or added these state objects to our code here. But
you can follow the same pattern to see how they might be implemented.

There is a chapter specifically looking at creating a starting scene too - see
Adding a Cut Scene.

+++ title = ‘Ch024 - Game Mechanic: Extending the Game Size’ +++

Game Mechanic: Extending the Game Size
The game mechanic or rather element of changing the space the player can move
around in is essential to many platform games. Let’s look at how we can extend
our world so that when our player starts to move towards the edges, the world
scrolls to reveal more space.

Check the Code: What we need to know and do
To make this work we need to do three main things.

• increase the size of our world size without increasing the screen size
• set up a “camera” to follow our player as they move

80

The code for a minimal example of the Extending the Game Size is shown here
- https://jamm-labs.github.io/ggcp/game-mechanic-extend-game-world/game.js

Going over the code:

First note that we should add a new variable var background at the start of our
code. Then have a look at some key code in the create function;

game.world.setBounds(0, 0, 1100, 400);

We also set the bounds of the world to be wider than the game size created
when we created the game object. Here we have a width of 1100, you can change
this to experiment with bigger or smaller worlds.

To make the focus of the game follow the player, so that for the most part the
player stays in the centre of the screen, we set a camera to follow the player and
for the background to also move with along with the camera

game.camera.follow(player);

Finally if you are using our grid game template then you will need to make the
design of the game bigger. Have a look at the code example above for a game
which has done that. Or you can just play around.

If you want to have a moving background image you can use a tileSprite. There
are more details on using tileSprites including a nifty tip right at the end to use
a parallax effect in a chapter here 1.

That’s it. We hope you enjoy adding this game dynamic to your game to extend
your game size.

1. https://docs.idew.org/video-game/project-references/phaser-coding/tilesprite-
scrolling

+++ title = ‘Ch025 - Game Space: Scaling our Sprites’ +++

Game Space: Scaling our Sprites
We can make our sprites appear bigger on our web page. This may be useful
is case you just want to change how they look, but it can also make for some
interesting changes in game play too as this examples shows.

81

https://jamm-labs.github.io/ggcp/game-mechanic-extend-game-world/game.js
https://docs.idew.org/video-game/project-references/phaser-coding/tilesprite-scrolling

Check the Code: what we need to know and do
The code for a minimal example of the Scaling our Sprites game is shown here -
https://jamm-labs.github.io/ggcp/grooow-examples-mechanic/game.js

Going over the code:

Have a look at our code you will notice the following lines in the
PlayState.create function ;

player.body.gravity.y = gravity;
player.scale.setTo(0.7);
player.anchor.setTo(0.5,0.5);

To make our game more interesting here we’ll start with the player a bit smaller
by setting the scale to be 70 percent, i.e. 0.7 rather than 1. As we are going to
change the size later we also need to change the anchor of the sprite to avoid a
jumping effect on resizing.

var takeCoin = function (player, coin) {
coin.kill();
winNoise.play();
player.scale.setTo(player.scale.x * 1.2);
player.body.gravity.y += 200;

};

To make out player bigger the scale is increased by multiplying it by 1.2. At the
same time, the level of gravity is increased as well to give the impression that
our player sprite weighs more too.

82

https://jamm-labs.github.io/ggcp/grooow-examples-mechanic/game.js

You can see that this process as well as changing the look can also change the
way our game plays.

+++ title = ‘Ch026 - Game Space: Adding Level/s’ +++

Game Space: Adding Level/s
To allow our game to be playable more than one screen and keep the player
coming back for more we can add levels get harder and harder. Here we will add
the ability to use more than one level layout and have control over where we
place our enemies, platforms and rewards (coins). We will do this in two ways.
Firstly we will create separate functions to load those elements, and then we’ll
explore a way to load in platforms and coins to collect from data objects in the
json format.

Check our code: what we need to know and do
There is some background knowledge in this book that will be useful for us in
getting this mechanic to work;

• Adding Sprites in Groups - see Create a Game Space
• Working with Loops - see Adding a Reward
• Have a good grip of how all our code fits together - see Understanding our

Game Structure

83

https://3m.flossmanuals.net/#create-a-game-space/
https://3m.flossmanuals.net/#adding-a-reward/

Going over the code:

The code for a minimal example of the code for adding levels in a simple way here-
https://jamm-labs.github.io/ggcp/gamespace-more-levels-simple/js/game.js

Note this global variable at the start of our code outside of any particular
function. It is located here as it needs to be used by more than one function;

var currentLevel = 1;

This currentLevel variable keeps a track of what level we are on. It is set to 1
to start off with. Now in the create function - find the section where you design
your levels using grids. Copy the formatting of levels one to three, to create a
new level4 variable. This will look like the code below.

var level4 = [
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" ",
" o",
"xxxxxxxxxxxxxxxxx"

];

Next we also need to add another option to the section where the code finds out
what level we are on and then sends that level to the loadLevel function to make
the coins, platforms and enemies appear on the screen. Add this code to that
section.

} else if (currentLevel === 4) {
loadLevel(level4);

}

We can keep adding more levels and using this way of designing them to add
challenge to our game.

Having more control - Adding our different kinds of coins / enemies /
platforms

When we use the grid layout in this way there are limits in the way we use it.
For example if we want to create a larger enemy than 32 pixels wide or high
then we won’t be able to do it well using this grid.

We have some options for how to overcome this limit. One way is to get rid of

84

https://jamm-labs.github.io/ggcp/gamespace-more-levels-simple/js/game.js

this grid completely and to design our levels from scratch, another is to keep the
grid but also to add in our own elements to it.

Let’s take the example of adding our own larger, or moving enemy. We can follow
instructions for how to create one in this chapter - Adding a moving enemy.

In short we add 4 lines to our create function. If we are using our Grid Game
Template, this has the side effect of making that moving enemy appear in the
same place on every level. So to avoid that happening we will add the same code
but we will add it only to level 1 by placing it in the following location.

if (!currentLevel || currentLevel === 1) {
loadLevel(level1);
// add extra code for just level one here

var enemy1 = game.add.sprite(370, 320, "enemy");
enemies.add(enemy1);
var tween1 = game.add.tween(enemy1);
tween1.to({x:170, y: 320}, 2000, null, true, 0,-1,true);

We can see here that this will only appear on the first level.

We can now add our own moving enemies, or special power ups and custom size
platforms, coins or hazards for each level.Have fun with this!

Other ideas to extend this mechanic

Other ideas to extend this mechanic could include

• Adding a Game Over state - see Understanding our Game Structure

• Loading platform and coin data more efficiently using Json - see Add Level
Data with Json

That’s it. We hope you enjoy adding this game element to your game.

+++ title = ‘Ch027 - Game Space: Keys and Doors’ +++

Game Space: Keys and Doors
The game mechanic of collecting keys to be able to open doors to enter other
spaces is well used in platform games to increase a sense of adventure. Let’s
look at one way to do this. We draw on the code of a similar tutorial here by
Belen Albeza.

85

https://mozdevs.github.io/html5-games-workshop/en/guides/platformer/win-condition/
https://mozdevs.github.io/html5-games-workshop/en/guides/platformer/win-condition/

Check the code: what we need to know and do
There is some background knowledge in this book that will be useful for us in
getting this mechanic to work - adding More levels - Game Mechanic: Adding
Levels

Going over the code:

The code for a minimal example of the Keys and Doors game mechanic is shown
here - https://jamm-labs.github.io/ggcp/key-and-doors-grid/js/game.js

Make sure you have or add these variables at the start of our code that are
located outside of any one function as they are needed by more than one function.

var hasKey = false;
var key;
var door;

In the playState.preload function we will need to load some images for our
keys and doors. Here are two lines which you can copy and use while testing.
You can replace these images with your own.

game.load.image("key", "https://cdn.glitch.com/5d318c12-590d-47a1-b471-92a5dc0aae9d%2Fkey.png");
game.load.spritesheet("door2, "https://cdn.glitch.com/5d318c12-590d-47a1-b471-92a5dc0aae9d%2Fdoor.png", 42, 66);

Then we will create a key and door for our first level. Add the following code to
our if statement in the playState.create function which controls which level
is loaded.

if (!currentLevel || currentLevel === 1) {

86

https://3m.flossmanuals.net/#adding-other-levels/
https://3m.flossmanuals.net/#adding-other-levels/
https://jamm-labs.github.io/ggcp/key-and-doors-grid/js/game.js

loadLevel(level1);
// add extra code for just level one here
key = game.add.sprite(100,25,"key");
door = game.add.sprite(20,260,"door");
door.animations.add("open", [1, 2], 8); // 8fps

Then when the play is happening. We want to set up overlap conditions in our
****playState.update function for player and keys and doors.

game.physics.arcade.overlap(player, key, hitKeys);
game.physics.arcade.overlap(player, door, hitDoors);

We then create new functions mentioned in these overlap statements. Create
these functions after your update function in your code.

In hitKeys we want to kill off the key and set our hasKey variable to true, ready
to open the door.

var hitKeys = function (player, key) {
key.kill();
hasKey = true;

};

For the hitDoor function we need to check to see if the player has already picked
up the key, as we don’t want anything to happen if that is not the case, or if
they haven’t collected all the coins yet too.

var hitDoors = function (player, door) {
if (hasKey === true && coins.total === 0){

door.animations.play("open");
hasKey = false;
player.kill();

87

game.time.events.add(1000, nextLevel, this);
}

};

If the player does have the key then we want to play the animation of the door
opening, then reset the value of hasKey as we don’t want that to continue to
the next level, make the player disappear, and then call the next level function
after one second so that we get to see the door opening.

We also need to comment out the code which would allow the player to progress
to the next level if they have just collected all the coins.

// MAKE SURE TO COMMENT OUT OR REMOVE THE FOLLOWING CODE
//if the player has collected all the coins move them on to the next level
// if (coins.total === 0) {
// nextLevel();
// }

That’s it. We hope you enjoy adding this game space element to your game to
allow the use of keys and doors to encourage exploration.

+++ title = ‘Ch028 - Polish: Create a Cut / Opening Scene’ +++

Polish: Create a Cut / Opening Scene
Cut scenes are the little bits between game levels. In one classic early cut scene
Pac Man is chase off the screen persued by a ghost but then returns having
grown in size to chase the ghost back. These scenes act as an introduction or
break up game play and serve other purposes like “scenes could be used to show
conversations between characters, set the mood, reward the player, introduce
new gameplay elements, show the effects of a player’s actions, create emotional
connections” etc 1.

88

Check your Code: What we need to know and do
To create cut scenes we’ll be learning more about animation using tweens
and timing. You can check your code against our completed example here -
https://jamm-labs.github.io/ggcp/cut-scene-tween-demo/game.js

If we are working as a team,then this is also a great project for someone who is
drawn to the art and narrative side of game to sink their teeth into.

To follow this tutorial you can start with this starter project which is the base
our the hands on example. https://jamm-labs.github.io/ggcp/cut-scene-
starter/game.js

This project has a similar structure to the game we have been working on but it is
going to be a different object called startState (as well as a minimal playState).
Have a look at the code to see the familar pattern of preload, create and update
functions.

Adding Timer Events To tell a story using a cut scene we are going to move
our character and get them to say things one after the other. To do this we
are gong to have to understand time events to say when something will happen.
Add the following code to the create: function to add our characters to the
game but set the visibility to be false so it don’t appear right away.

player = game.add.sprite(20, 215, "player");
player.animations.add("right", [1, 2, 3, 4], 6, true);
player.scale.setTo(1.5);
player.visible = false;

89

https://jamm-labs.github.io/ggcp/cut-scene-tween-demo/game.js
https://jamm-labs.github.io/ggcp/cut-scene-starter/game.js
https://jamm-labs.github.io/ggcp/cut-scene-starter/game.js

One second after it loads after our game loads we want to show the image of our
player which is now a space person. To do this we will add a thing called a time
event to the game. Add this at the end of the create function

game.time.events.add(1000, this.playerShow, this);

This function, at a very simple level like this, uses three parameters;

1. the time when you want something to happen
2. the name of the function you want to run
3. the context you want the function called in (don’t worry to

much about this bit it’s normally just this)

We now need to write the playerShow function and add it to the startState
object.

startState.playerShow = function() {
player.visible = "true";

};

Run the code by clicking on Show Live to see the result

Adding Movement via Tweens So far so good. Now let’s get this player to
move. We’ll repeat the process above by adding a timed event which calls a new
function, and then writing this new function which will move our player. Add
the following line to create function

game.time.events.add(2000, this.playerMove, this);

This will start the player moving two seconds after the start of this startState.

Now let’s write this function to use a Tween to move our player sprite.

startState.playerMove = function () {
var tween = game.add.tween(player);
tween.to({x: 70, y: 215}, 1000, null, true, 0, 0, false);
player.animations.play("walk");

};

Here we create a tween and set the tween to parameters, this process is outlined
in the hazards and enemies chapter of this book.

We also start the player animation of our character walking.

Relative Positioning and Text Now let’s make our player say something.
We’ll repeat the same process as above.

game.time.events.add(3000, this.speech1, this);

And then write a function which will show a speech bubble graphic as described
in the section below.

90

startState.speech1 = function () {
player.animations.stop();
var speech1 = game.add.sprite(player.x - 70, player.y - 50, "speech1");

};

Hands On - Creating More Graphical Assets

Part of the fun o of making your own games is to create your graphics and
characters. There are many tools to do this available online for free download,
and some which allow you instant creativity by allowing you to work in your
web browser. Here are some of the tools we use.

Creating Pixel Characters with Piskel: We have already played with Piskel
to create our own characters. You can create all sorts of pixel art for your cut
scene using this tool.

http://piskelapp.com/

Creating Speech Bubbles with Wigflip: This fun website does a good job
of creating simple and quick pixel art speech bubbles

http://wigflip.com/ds/

Creating general text at Textcraft: This is a fantastic and very flexible site
for creating funky looking game text graphics. You must try it.

https://textcraft.net/

+++ title = ‘Ch029 - Game Mechanic: Adding Levels using Json’ +++

91

http://piskelapp.com/
http://wigflip.com/ds/
https://textcraft.net/
https://textcraft.net/

Game Mechanic: Adding Levels using Json
Here we will add the ability to use more than one level layout and have complete
control over where we place our enemies, platforms and rewards (coins). We’ll
explore a way to load in platforms and coins to collect from data objects in the
JSON format.

Going over the Code
The code for a minimal example of the code for adding levels using json https:
//jamm-labs.github.io/ggcp/game-mechanic-more-levels/game.js

Create a variable in the list of global variables at the start of our code called
level data

var leveldata;

Now create some data in the JSON style format. We could have these in external
files but we’ll keep them in our game.js file to reduce the complexity of this
example. All we need to know right now is we are using this approach to store
the data for where our coins and platforms are. The JSON format is explained
in more detail here https://developer.mozilla.org/en-US/docs/Learn/JavaScript
/Objects/JSON.

We can have a look at our entry for level one below.

var level1 = {"platforms":[{"image":"ground","x":0,"y":325},{"image":"grass:4x1","x":150,"y":240},{"image":"grass:4x1","x":250,"y":160}],
"coins":[{"image":"coin","x":0,"y":225},{"image":"coin","x":150,"y":200}]

This data contains two main sections, one for platforms and one for coins. Within
those parts, there is an entry for the image name (which was defined in preload),
and where it will appear on the screen. There is one for each level we want.

The next relevant bit of code is to choose which level

if (!currentLevel || currentLevel ===1){
leveldata = level1;

}
else if (currentLevel === 2){
leveldata = level2;

}

When generating the game area in creating we have added two loops to loop
through each of lists of sprites, add them to the screen and add them to the
relevant group.

for (var i = 0; i < leveldata.platforms.length; i++) {
var platform = platforms.create(leveldata.platforms[i].x, leveldata.platforms[i].y, leveldata.platforms[i].image);
platform.body.immovable = true;
var coin =coins.create(leveldata.coins[i].x, leveldata.coins[i].y, leveldata.coins[i].image);

}

92

https://jamm-labs.github.io/ggcp/game-mechanic-more-levels/game.js
https://jamm-labs.github.io/ggcp/game-mechanic-more-levels/game.js
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON

That’s it. We hope you enjoy adding this game element to your game.

93

	Introduction
	What this Book is and isn’t
	Playful group learning processes
	Making Games on the Web using Glitch
	Making Games using Phaser
	Why Javascript for beginners?
	About the Phaser Community and Games

	Jumping Right In
	Getting started with the Glitch.com Codeplayground
	Have a play with a simple platform game
	Create your own characters
	Extra Activity

	Debugging your code in Glitch.com

	Choose your own Adventure
	Open World vs On Rails Learning
	What makes up a Game?
	Our own Framework for Game Elements

	Adding / Changing Game Mechanics
	Adding Game Polish
	Changing Game Space
	Go On Choose your own Adventure
	Meeting yourself in the middle

	Building a World
	Creating a Game Area
	Adding a Player to the Game Area
	Adding Gravity to our player
	Check your Code
	Understanding Sequencing
	Variables and the var keyword
	Using functions and parameters

	Creating a Group for our Platforms and Ground
	Debugging Jumping
	Checking our Code
	More on conditionals

	Adding Movement
	Moving our player around the screen
	Make it easy to control our speed
	Checking our Code
	Understanding ****if statements / Conditionals: ****

	Adding a Reward
	Creating our Coin
	Making the coins disappear
	Checking our Code
	Loops and Iterating
	Making and calling functions

	Hazards and Enemies
	Adding an Animated Hazard
	Restarting our Game
	Check your Code

	Understanding our Game Structure
	How the code of the two approaches is similar and different
	How the code is similar
	Adding Sounds
	Adding Levels
	Navigating Levels

	Getting ready to Cut and Paste our Code Patches
	Getting Started adding new Game Elements

	Game Mechanic: Add Moving Enemies
	What we need to know and what we will do
	Create an image for your Enemy and import it to your project
	Going over the code
	Taking it Further

	Game Mechanic: Jumping on Enemies
	What we need to know and what we will do
	Going over the code:

	Game Mechanic: Add a Countdown Timer
	What we need to know and do
	Going over the code:

	Game Mechanic: Longer Jumps if Holding Jump Down
	What we need to know and do
	Going over the code:

	Game Mechanic: Smaller Sprite Collision Boxes
	Check the Code: what we need to know and do
	Going over the code:
	Collision boxes and Hazards

	Game Mechanic: Extra Lives
	What we need to know and what we will do
	Create an image for your Lives Indicator and import it to your project
	Going over the code:
	Other ideas to extend this mechanic

	Game Mechanic: Player Health Meter
	What we need to know and what we will do
	Going over the code:

	Polish: Adding our Own Sound Effects
	Swapping over existing Sounds
	Going over the code

	Polish: Add Animation to your Character
	What we need to know and what we will do
	Creating an Animated Character in Piskel

	Going over the code
	Optional - Adding more animations

	Polish: Add Soundtrack Music
	Check the Code: what we need to know and do

	Polish: Animate Sprite when Zapped
	Check the Code: what we need to know and do
	Going over the code:

	Polish: Screen Shake
	Polish: Screen Shake when Zapped
	Check the Code: what we need to know and do

	Polish: Explosions using Particles
	Check the Code: what we need to know and do
	Going over the code:

	Game Space: Add your own Background
	What we need to know and what we will do
	Creating and Uploading your Images
	Adding our new code:

	Game Space: Add Game Over Screen
	Check the Code: what we need to know and do
	Going over the code:

	Game Mechanic: Extending the Game Size
	Check the Code: What we need to know and do
	Going over the code:

	Game Space: Scaling our Sprites
	Check the Code: what we need to know and do
	Going over the code:

	Game Space: Adding Level/s
	Check our code: what we need to know and do
	Going over the code:
	Having more control - Adding our different kinds of coins / enemies / platforms
	Other ideas to extend this mechanic

	Game Space: Keys and Doors
	Check the code: what we need to know and do
	Going over the code:

	Polish: Create a Cut / Opening Scene
	Check your Code: What we need to know and do
	Hands On - Creating More Graphical Assets

	Game Mechanic: Adding Levels using Json
	Going over the Code

